• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 229
  • 61
  • 13
  • 12
  • 8
  • 5
  • 5
  • 5
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 613
  • 103
  • 96
  • 70
  • 68
  • 67
  • 66
  • 46
  • 45
  • 37
  • 35
  • 35
  • 35
  • 34
  • 33
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

Numerical  Investigation of Savonius Wind Turbines

Raja Mahith Yelishetty (15400922) 03 May 2023 (has links)
<p>  </p> <p>In this study, we aimed to explore the potential of integrating wind turbines into tall buildings to harness wind energy in urban areas. Advanced computer simulations will be used to analyze the complex wind patterns and turbulence around tall buildings. We will also study the optimization of wind turbine placement to maximize energy production. We focus on two types of wind turbines, the savonius and a modified savonius, using the Myring formula. We evaluated their performance in turbulent urban areas using computational fluid dynamics simulations. The simulations will also help us understand the wind flow behavior around tall buildings, informing wind turbine placement optimization.</p> <p>Our findings contribute to the understanding of urban wind energy production. This may lead to further advancements in wind turbine design and application in urban environments, promoting sustainable and clean energy production in densely populated areas.</p> <p>We also evaluate the economic feasibility of wind power as an energy source and its potential for commercial applications. Our study's insights are significant for wind energy research, urban planning, and sustainable energy production in cities.</p> <p>To achieve our objectives, we will use state-of-the-art computational tools such as the ANSYS Fluent Student software and the Steady Reynolds Averaged Navier-Stokes (SRANS) K-ε model and K-ω SST models for simulating wind flow around tall buildings.</p> <p>In summary, the goal of this research is to develop a methodology for integrating wind turbines into tall urban buildings to harness wind energy potential. This will contribute to the understanding of urban wind energy production and its economic feasibility for commercial applications.</p>
232

MODELING WOUND HEALING MECHANOBIOLOGY

Yifan Guo (15347257) 27 April 2023 (has links)
<p>The mechanical behavior of tissues at the macroscale is tightly coupled to cellular activity at the microscale and tuned by microstructure at the mesoscale. Dermal wound healing is a prominent example of a complex system in which multiscale mechanics regulate restoration of tissue form and function. In cutaneous wound healing, a fibrin matrix is populated by fibroblasts migrating in from a surrounding tissue made mostly out of collagen. Fibroblasts both respond to mechanical cues such as fiber alignment and stiffness as well as exert active stresses needed for wound closure. </p> <p>To model wound healing mechanobiology, we first develop a multiscale model with a two-way coupling between a microscale cell adhesion model and a macroscale tissue mechanics model. Starting from the well-known model of adhesion kinetics proposed by Bell, we extend the formulation to account for nonlinear mechanics of fibrin and collagen and show how this nonlinear response naturally captures stretch-driven mechanosensing. We then embed the new nonlinear adhesion model into a custom finite element implementation of tissue mechanical equilibrium. Strains and stresses at the tissue level are coupled with the solution of the microscale adhesion model at each integration point of the finite element mesh. In addition, solution of the adhesion model is coupled with the active contractile stress of the cell population. The multiscale model successfully captures the mechanical response of biopolymer fibers and gels, contractile stresses generated by fibroblasts, and stress-strain contours observed during wound healing. We anticipate this framework will not only increase our understanding of how mechanical cues guide cellular behavior in cutaneous wound healing, but will also be helpful in the study of mechanobiology, growth, and remodeling in other tissues. </p> <p>Next, we develop another multiscale model with a bidirectional coupling between a microscale cell adhesion model and a mesoscale microstructure mechanics model. By mimicking the generation of fibrous network in experiment, we established a discrete fiber network model to simulate the microstructure of biopolymer gels. We then coupled the cell adhesion model to the discrete model to obtain the solution of microstructure equilibrium. This multiscale model was able to recover the volume loss of fibrous gels and the contraction from cells in the networks observed in experiment. We examined the influence of RVE size, stiffness of single fibers and stretch of the gels. We expect this work will help bridge the activity of cell to the microstructure and then to the tissue mechanics especially in wound healing. We hope this work will provide more rigorous understanding in the study of mechanobiology.</p> <p>At last, we established a computational model to accurately capture the mechanical response of fibrin gels which is a naturally occurring protein network that forms a temporary structure to enable remodeling during wound healing and a common tissue engineering scaffold due to the controllable structural properties. We formulated a strategy to quantify both the macroscale (1–10 mm) stress-strain response and the deformation of the mesoscale (10–1000 microns) network structure during unidirectional tensile tests. Based on the experimental data, we successfully predict the strain fields that were observed experimentally within heterogenous fibrin gels with spatial variations in material properties by developing a hyper-viscoelastic model with non-affined evolution under stretching. This model is also potential to predict the macroscale mechanics and mesoscale network organization of other heterogeneous biological tissues and matrices.</p>
233

Evaluation of deformed MnS in different industrial steels by using electrolytic extraction

Guo, Shuo January 2017 (has links)
The inclusions have a different chemical composition and give the steel different mechanical properties. These inclusions affect several properties of steel. In order to understand how the inclusions will affect the steel properties, the electrolytic extraction of 3D investigate method is applied on the steel grade of 42CrMo4. Then follow with Scanning Electron Microscope (SEM) observation. Steel samples from both ingot and rolling with and without heat treatment are observed and compared with different ratios. The result shown that, heat treatment can be applied for removing carbides successfully. And most inclusions are belonging to Type RS which is rod like MnS. The percentage of broken particles can be up to 80%, which means that the reason for the inclusions broken should be find. And heat treatment can affect the characteristics of elongated MnS.
234

Effects of process parameters on granules properties produced in a high shear granulator

Rahmanian, Nejat, Naji, A., Ghadiri, M. January 2011 (has links)
Results of a study on the influence of process parameters such as impeller speed, granulation time and binder viscosity on granule strength and properties are reported. A high shear granulator (Cyclomix manufactured by Hosokawa Micron B.V., The Netherlands) has been used to produce granules. Calcium carbonate (Durcal) was used as feed powder and aqueous polyethylene glycol (PEG) as the binder. The dried granules have been analysed for their strength, density and size distribution. The results show that increasing the granulation time has a great affect on granules strength, until an optimum time has been reached. The underlying cause is an increase in granule density. Granules are consolidated more at higher impeller speeds. Moreover, the granule size distribution seems not to be affected significantly by an increase in impeller speed. Granules produced with high binder viscosity have a considerably lower strength, wide strength distribution due to poor dispersion of binder on the powder bed. Binder addition methods have showed no considerable effect on granule strength or on granule size distribution.
235

Seeded granulation

Rahmanian, Nejat, Ghadiri, M., Jia, X. January 2011 (has links)
A novel method for manufacturing granules with a large particle at their core, referred to as seeded granules, is presented. As an example, calcium carbonate powders (Durcal) of different grades are used as primary particles and polyethylene glycol (PEG) as liquid binder in high shear granulators of different scales (Cyclomix, manufactured by Hosokawa Micron B.V., The Netherlands). The conditions giving rise to seeded granulations are specified in the form of an operational regime map. It is found that the seeded structure is strongly dependent on the impeller speed and the primary particles size distribution. It is shown that a Stokes number of around 0.1 represents the optimal dynamic conditions in the given example for producing seeded granules, regardless of the scale of the granulator.
236

Characterisation and standardisation of different-origin end-of-life building materials toward assessment of circularity

Ozcelikci, E., Yildirim, Gurkan, Siad, H., Lachemi, M., Sahmaran, M. 10 November 2023 (has links)
Yes / Construction and demolition waste (CDW) management and recycling practices are crucial for transitioning to a circular economy. This study focuses on the detailed characterization of CDWs, including hollow brick (HB), red clay brick (RCB), roof tile (RT), concrete (C), and glass (G), collected from seven different sites. The CDWs were characterized based on particle size distribution, chemical composition, and crystalline nature. Pozzolanic activity was evaluated through compressive strength measurements of cement mortars with 20% cement replacement by CDWs at 7, 28, and 90 days. The results showed that clayey CDWs exhibited similar physical/chemical properties and crystalline structures. Compositions of Cs varied significantly based on their original materials. CDWs satisfied the minimum strength activity index for supplementary cementitious materials, with pozzolanic activity influenced by fineness and SiO2+Al2O3 contents. The average strength activity indexes for HB, RCB, RT, C, and G were 84.5%, 86.3%, 83.4%, 80.7%, and 75.8%, respectively. Clayey CDWs contributed to mechanical strength development, while Cs' contribution was related to hydration of unreacted cementitious particles. G exhibited the weakest pozzolanic activity due to its coarser particle size. Overall, CDWs demonstrated suitable properties for use as supplementary cementitious materials in PC-based systems.
237

CHARACTERISTICS OF HYDROGEN FUEL COMBUSTION IN A REHEATING FURNACE

Chukwunedum Uzor (14247641) 12 December 2022 (has links)
<p>Current industrial practice in the steel Industry involves the use of natural gas with high methane content as a primary energy source. Natural combustion produces greenhouse gases, and with the continued focus on managing and reducing harmful emissions from industrial processes, there is a need for research into alternative sources of energy. Among several alternatives that have been studied is hydrogen: a non-carbon-based fuel. This work uses a coupled computational fluid dynamics (CFD)-finite element analysis (FEA) combustion model to investigate hydrogen utilization as a fuel in a reheat furnace and how it impacts the quality of the steel produced by understanding the three dimensional (3D) flow behavior, furnace temperature profile, thermal stress distribution, heat flux, formation of iron oxides, emission gases and mode of heat transfer onto the steel slabs. The modeling process integrates the five different zones of a pusher type reheating furnace (top and bottom) and modeled using Ansys Fluent 2020R1 and Ansys Workbench 2022R1. Changes in these parameters are determined by comparison to a baseline case that uses methane as fuel and maintaining the same heat input in terms of chemical energy into the furnace. Global mechanism was used for hydrogen and two step mechanism was used for methane combustion. Results revealed a 2.6% increase in average temperature to 1478K across the furnace for hydrogen which resulted in 6.45% increase in maximum heat flux into the slabs. Similar flue gas flow patterns were seen for both cases and heat transfer mode from the combustion gases to the slabs was primarily by radiation (~97%) for both methane and hydrogen. 11.5% increase in iron oxide formation on the slab was recorded for the hydrogen case, however, the bulk of the iron oxide formed was more of wüstites which are the easiest form of iron oxide to descale. However, elevated nitrogen oxide (NOx) levels were recorded for hydrogen combustion which led to further study into NOx mitigation techniques. Application of the staged combustion method using hydrogen fuel showed potentials for NOx reduction. The use of regenerative burners further conserved exergy losses in hydrogen fuel application. Insignificant deviation from base case thermal stress distribution and zero carbon emission from the hydrogen case indicates the usability of hydrogen as an alternative fuel in reheating furnace operations. </p>
238

Traffic and performance evaluation for optical networks. An Investigation into Modelling and Characterisation of Traffic Flows and Performance Analysis and Engineering for Optical Network Architectures.

Mouchos, Charalampos January 2009 (has links)
The convergence of multiservice heterogeneous networks and ever increasing Internet applications, like peer to peer networking and the increased number of users and services, demand a more efficient bandwidth allocation in optical networks. In this context, new architectures and protocols are needed in conjuction with cost effective quantitative methodologies in order to provide an insight into the performance aspects of the next and future generation Internets. This thesis reports an investigation, based on efficient simulation methodologies, in order to assess existing high performance algorithms and to propose new ones. The analysis of the traffic characteristics of an OC-192 link (9953.28 Mbps) is initially conducted, a requirement due to the discovery of self-similar long-range dependent properties in network traffic, and the suitability of the GE distribution for modelling interarrival times of bursty traffic in short time scales is presented. Consequently, using a heuristic approach, the self-similar properties of the GE/G/¿ are being presented, providing a method to generate self-similar traffic that takes into consideration burstiness in small time scales. A description of the state of the art in optical networking providing a deeper insight into the current technologies, protocols and architectures in the field, which creates the motivation for more research into the promising switching technique of ¿Optical Burst Switching¿ (OBS). An investigation into the performance impact of various burst assembly strategies on an OBS edge node¿s mean buffer length is conducted. Realistic traffic characteristics are considered based on the analysis of the OC-192 backbone traffic traces. In addition the effect of burstiness in the small time scales on mean assembly time and burst size distribution is investigated. A new Dynamic OBS Offset Allocation Protocol is devised and favourable comparisons are carried out between the proposed OBS protocol and the Just Enough Time (JET) protocol, in terms of mean queue length, blocking and throughput. Finally the research focuses on simulation methodologies employed throughout the thesis using the Graphics Processing Unit (GPU) on a commercial NVidia GeForce 8800 GTX, which was initially designed for gaming computers. Parallel generators of Optical Bursts are implemented and simulated in ¿Compute Unified Device Architecture¿ (CUDA) and compared with simulations run on general-purpose CPU proving the GPU to be a cost-effective platform which can significantly speed-up calculations in order to make simulations of more complex and demanding networks easier to develop.
239

Pharmaceutical analysis and in-vitro aerodynamic characterisation of inhaled theophylline formulations containing drug particles prepared by supercritical fluid processing. Chromatographic, spectroscopic, and thermal analysis of micron-sized theophylline particles prepared by supercritical fluid technology and in-vitro evaluation of their performance as inhaled dry powder formulations.

Mohamed, Noha N.A. January 2009 (has links)
The aim of this work is to study the in-vitro aerodynamic performance of a new inhaled theophylline formulation prepared by supercritical fluids technique. For the analysis of the output from the in-vitro tests (and further in-vivo tests) a new, fast, sensitive high performance liquid chromatographic (HPLC) method was developed and validated for the determination of theophylline and other related derivatives in aqueous and urine samples using new packing materials (monolithic columns). These columns achieve efficient separation under lower backpressure and shorter time comparing to other traditionally or newly introduced C18 columns. Solution enhanced dispersion by supercritical fluid (SEDS) process has been applied for the production of anhydrous theophylline as pure crystals in the range 2-5 ¿m to be used as new inhaled dry powder formulation for asthma. Fifteen theophylline samples have been prepared under different experimental conditions. The drug produced by this method has been subject to a number of solid-phase analytical procedures designed to establish the crystal structure [X-ray powder diffraction (XRPD)], the structure and conformation [(FTIR), Fourier-transform Raman spectroscopy (FT-Raman)], and the morphology and particle size [scanning electron microscope (SEM)]. While, thermal gravimetric analysis (TGA), and differential scanning calorimetry (DSC) have been used to monitor any phase transition or polymorphic changes after processing. All these analytical techniques gave a satisfactory indication of the solid-state chemistry of the processed particles and assess the development of new inhalation product. The performance of inhaled SEDS theophylline with or without a carrier was evaluated using the developed HPLC method. Three samples having different particle sizes were selected out of the prepared powders by SEDS technique to be tested. The dose sampling unit and the Anderson Cascade Impactor were used to determine the in-vitro emitted dose and the deposition profiles of SEDS samples, respectively. The effect of different inhalation flows was studied using two different flows 28.3, and 60 L min-1 with 4 L inhalation volume. Different DPI devices were investigated in this study; Easyhaler® and Spinhaler®. The particle size has an important effect on the aerodynamic behaviour and deposition profile of inhaled drug, the smaller the particles the greater the total lung deposition. The presence of a carrier improves the respirable fraction for all the tested formulations. / Egyptian Ministry of Higher Education
240

Identification and characterisation of anti-platelet antibodies in ITP patients.

Aghabeigi, N. January 2011 (has links)
Digital full-text not provided.

Page generated in 0.121 seconds