Spelling suggestions: "subject:"characteristic off euler"" "subject:"characteristic off ruler""
1 |
Equivariant Vector Fields On Three Dimensional Representation SpheresGuragac, Hami Sercan 01 September 2011 (has links) (PDF)
Let G be a finite group and V be an orthogonal four-dimensional real representation space of G where the action of G is non-free. We give necessary and sufficient conditions for the existence of a G-equivariant vector field on the representation sphere of V in the cases G is the dihedral group, the generalized quaternion group and the semidihedral group in terms of decomposition of V into irreducible representations. In the case G is abelian, where the solution is already known, we give a more elementary solution.
|
2 |
Sobre o número máximo de retas em superfícies não singular de grau 4 em P3Rêgo, Thiago Luiz de Oliveira do 14 September 2016 (has links)
Submitted by ANA KARLA PEREIRA RODRIGUES (anakarla_@hotmail.com) on 2017-08-23T13:08:07Z
No. of bitstreams: 1
arquivototal.pdf: 1209071 bytes, checksum: 1eddcf2f494891c2466f5052f15d1ced (MD5) / Made available in DSpace on 2017-08-23T13:08:07Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 1209071 bytes, checksum: 1eddcf2f494891c2466f5052f15d1ced (MD5)
Previous issue date: 2016-09-14 / Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq / In 1943 Beniamino Segrebelievedtohaveshownthatthemaximumnumberof lines containedinasmoothquarticsurfacein P3 is 64, ([16]).Butrecently,therewasa majoroverturnonthatthemewhenthemathematiciansRamsandSchuttfoundthat Segre hadmadeamistakeinhisworktoforgetthequartic'sfamily Z , ([14]),which essentiallycorrespondstothosequarticscontainingalinesthatcanbeincidenttomore than 18 lines containedinthesurface.Inthiswork,basedon([14]),weshowthatevery smoothquarticsurface,whichdoesnotbelongtofamily Z containsamaximumof 64 lines. Oneofthemostimportanttoolstoshowthisresult,isthestudyof_brations _l induced byaline l containedonthesurface,andtherelationshipbetweentheEuler characteristicofthebase(P1 in ourcase),the_bersandthesurfaceconcerned. / Em 1943,BeniaminoSegreacreditouterdemonstradoqueonúmeromáximo de retascontidasnumasuperfíciequárticanãosingularem P3 é 64; ([16]). Mas recentemente,houveumareviravoltanessetema,quandoosmatemáticosSªawomir Rams eMatthiasSchüttconstataramqueSegretinhacometidoumerroemseutrabalho ao esquecerasquárticasdafamília Z; ([14]), quecorrespondemessencialmenteas quárticas quepossuemretasquepodemserincidentesamaisde 18 retas contidas na superfície.Nestetrabalho,tendocomobase[14],mostramosquetodaquártica não singular,quenãopertenceafamília Z; contémnomáximo 64 retas. Umadas ferramentasmaisimportantes,paramostraresseresultado,éoestudodas_brações _l induzida porumareta l contidanasuperfície,earelaçãoqueexisteentrea característica deEulerdabase(emnossocaso P1), das_brassingulareseadasuperfície em questão.
|
Page generated in 0.0901 seconds