Spelling suggestions: "subject:"chebyshev interpolation"" "subject:"tchebyshev interpolation""
1 |
Automatic algorithm for accurate numerical gradient calculation in general and complex spacecraft trajectoriesRestrepo, Ricardo Leon 21 February 2012 (has links)
An automatic algorithm for accurate numerical gradient calculations has been developed. The algorithm is based on both finite differences and Chebyshev interpolation approximations. The novelty of the method is an automated tuning of the step size perturbation required for both methods. This automation guaranties the best possible solution using these approaches without the requirement of user inputs. The algorithm treats the functions as a black box, which makes it extremely useful when general and complex problems are considered. This is the case of spacecraft trajectory design problems and complex optimization systems. An efficient procedure for the automatic implementation is presented. Several examples based on an Earth-Moon free return trajectory are presented to validate and demonstrate the accuracy of the method. A state transition matrix (STM) procedure is developed as a reference for the validation of the method. / text
|
2 |
Feigenbaum ScalingSendrowski, Janek January 2020 (has links)
In this thesis I hope to provide a clear and concise introduction to Feigenbaum scaling accessible to undergraduate students. This is accompanied by a description of how to obtain numerical results by various means. A more intricate approach drawing from renormalization theory as well as a short consideration of some of the topological properties will also be presented. I was furthermore trying to put great emphasis on diagrams throughout the text to make the contents more comprehensible and intuitive.
|
Page generated in 0.111 seconds