• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • Tagged with
  • 8
  • 8
  • 8
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Photocatalysis on a microfluidic reactor

Beheshtaein, Setareh 01 June 2016 (has links)
<p> The photocatalytic reaction has been integrated as a developing technology for various applications such as air and water remediation, and self-cleaning surfaces. The photocatalysis is an emerging pathway of heterogeneous photocatalysis and physical chemistry. In heterogeneous photocatalysis, semiconductor compounds, mainly TiO<sub>2</sub>, ZnO, CdS, and WO<sub>3</sub>, have been utilized especially for water treatment and contaminant degradation. Various pollutants, such as aromatic compounds, dyes and surface active agents, can be degraded with photocatalytic techniques. Ultraviolet light and visible light are the most important sources of radiation to conduct photocatalytic reactions. </p><p> In this study, we have developed a combined method using microfluidics and photocatalysis for wastewater treatment. This technique represents a promising solution for contaminant degradation that has advantages such as continuous operation, large surface area to volume ratio, rapid response, and fine flow control. The experiment was conducted by exposing samples to UV light with methylene blue as the model pollutant and titanium dioxide (TiO<sub>2</sub>) as the catalyst. The degradation of methylene blue was monitored with spectrophotometry. The effects of variables, such as residence time, chip thickness and intensity have been investigated. The photocatalytic degradation has been determined to be a pseudo-first-order reaction with a rate constant (0.18 <i>C</i><i><sub> C</sub></i><sup>0.334</sup>) related to catalyst concentration. Once optimized, this system could be scaled out to process wastewater at a larger scale.</p>
2

Treatment of Cooling Tower Blowdown Water Using Electrodialysis

Dhadake, Yatin 25 April 2019 (has links)
<p> With the pollution of freshwater sources and the continual increase in freshwater demand due to rapid industrialization and population explosion, the globe is facing an eminent danger of scarcity of freshwater. One way to increase the water supply beyond the hydrological cycle is to reuse and recycle the waste water by developing an onsite recycling/reclamation technology. Such a bench-scale treatment technology was developed to treat the cooling tower blowdown water (CTBW) from the cooling towers of California State University, Long Beach (CSULB). The CTBW was treated by using electrodialysis. </p><p> The main objective of this project was to bring down the level of total dissolved solids (TDS) of the CTBW to lower than 230 mg/L which is equivalent to the TDS level of tap water provided by the Long Beach Water Department. The secondary objective was to regenerate the hydrochloric acid using the waste ions. Two differently configured electrodialysis cells (onechambered and two-chambered cell) were used and their treatment efficiencies were compared. The one-chambered cell successfully reduced the TDS level by upto 48% for three samples tested in the setup. The two-chambered cell achieved the TDS reduction up to 93.4% for the four samples tested in the setup. The study was successful in regenerating 1.42 mol/L concentration of hydrochloric acid. An economic and water savings analysis was also performed. Calculations showed that by implementing this technology, it is possible to save 10,362,564.76 L/year which translates to $10,813.13 in economic savings. The total annual savings were estimated to be $12,984.01. The payback period for the investment in this study was 50 months, thus a profit of $15,949.48 is expected by the end of the equipment life of the setup.</p><p>
3

Sol-gel synthesized adsorbents for mercury(II), chromium(III) and cobalt(II) separations

Nam, Kwan-Hyun. Tavlarides, Lawrence L., January 2004 (has links)
Thesis (PH.D.) -- Syracuse University, 2004. / "Publication number AAT 3160395."
4

Ultra-Low NOx Measurement and Emission Factors Evaluation of a Compressed Natural Gas (CNG) Heavy-Duty Engine

Han, Yuwei 18 March 2017 (has links)
<p> Heavy duty on-road vehicles represent one of the largest sources of NO<sub> x</sub> emissions and fuel consumption in North America. Heavy duty vehicles are predominantly fueled with diesel, with the recent interest in natural gas (NG) systems. As emissions and greenhouse gas regulations continue to tighten new opportunities for advanced fleet specific heavy duty vehicles are becoming available with improved fuel economy. NO<sub>x</sub> emissions have dropped 90% for heavy duty vehicles with the recent 2010 certification limit. Additional NO<sub>x</sub> reductions of another 90% are desired for the South Coast Air basin to meet its 2023 NO<sub>x</sub> inventory requirements and the California optional low NO<sub>x</sub> standard in 2015.</p><p> One of the difficulties in quantifying NO<sub>x</sub> emissions at the levels proposed in this research (90% of the 2010 certification level ~ 0.02 g/bhp-hr) is the measurement methods are approaching their detection limit to sufficiently quantify NO<sub>x</sub> emissions. Three upgraded NO<sub> x</sub> measurement methods were considered which include a raw NO<sub>x</sub> measurement integrated with real time exhaust flow, a real-time ambient correction approach, and a trace level ambient analyzer for accurate bag analysis. In summary the improved methods varied in their success where the raw sampling approach showed to be the most accurate and precise over the rage of conditions tested. </p><p> The ISL G NZ 8.9 liter NG engine met and exceeded the target NO<sub> x</sub> emissions of 0.02 g/bhp-hr. This engine significantly reduced 97%&ndash;100% of NO<sub>x</sub> emissions compared with previous ISL G 8.9 engines. The NO<sub>x</sub> emissions decreased as the duty cycle was decreased which was the opposite trend for the diesel vehicles. It is expected NG vehicles could play a role in the reduction of the south coast NO<sub>x</sub> inventory problem given their near zero emission factors demonstrated.</p>
5

Microwave reactor engineering of zeolites synthesis

Gharibeh, Murad 01 January 2009 (has links)
Microwave chemistry has expanded over the last two decades due to the enhanced reaction rates achieved for many processes, including organic synthesis, inorganic synthesis and polymerization. Significant time and energy saving can be realized using microwave chemistry, which is important both commercially and for the environment. One of the most exciting and commercially/technologically significant areas where microwave energy has been demonstrated to influence the kinetics and selectivity is in the synthesis of nanoporous materials, such as zeolites. New nanoporous materials can be created, and the times for their syntheses can be significantly reduced, involving using less energy. By reducing the times by up to over an order of magnitude, continuous production would be possible to replace batch synthesis. However, the mechanism and engineering for the enhanced rates of these syntheses are unknown. The results from different laboratories are not consistent, and experimental details are sparse. Therefore, more research is required to unlock the mystery behind this “gee-wiz” chemistry. Furthermore, understanding the fundamental processes leading to rate enhancement by microwaves will also enable the optimization of these microwave heated reactions. In this work, the formation of SAPO-11 (and AlPO-11), silicalite and NaY zeolites under microwave heating was investigated and the influence of various microwave reactor engineering parameters was studied. Microwaves enhanced the SAPO-11 synthesis by two orders of magnitude over the conventional synthesis. Both nucleation and growth steps were enhanced by the presence of microwaves. Fast microwave heating was not solely responsible for this enhancement. This indicates that non-thermal interactions of material with microwaves are present for this synthesis. Many microwave reactor engineering parameters were identified as possibly influencing the microwave synthesis of SAPO-11 (and AlPO-11). These factors are precursor volume, reaction temperature, reactor size, stirring, applicator type and microwave frequency. Among those, the reaction temperature had the greatest influence on this SAPO-11 (and AlPO-11) synthesis. Increasing the reaction temperature decreased the nucleation time and increased the growth rate. The crystallization growth rate in the microwave synthesis showed higher activation energy (1.5 times) compared to the conventional synthesis. However, the pre-exponential factor increased by 8 orders of magnitude in the microwave synthesis. Nucleation rate also showed an increase in the activation energy (3.6 times) and an increase in the pre-exponential factor (10 orders of magnitude) by using microwave heating. This substantial increase in the pre-exponential factor could be the reason behind this microwave synthesis enhancement. High temperature, stirred synthesis, large vessel and using multimode field distribution oven found to be the optimum reaction conditions for microwave synthesis of SAPO-11 (and AlPO-11). Thermal variations within SAPO-11, silicalite and NaY synthesis solutions were measured using a reaction vessel with multiple fiberoptic temperature probes. NaY synthesis solution has the shortest microwave penetration depth among these zeolite synthesis solutions which led to great thermal variations between the region near the wall (high temperature) and the center (low temperature) when placed in a vessel with diameter 20 times larger than its penetration depth. Increasing these thermal variations led to a decrease in the nucleation time and thus enhanced this NaY microwave synthesis. Microwave power delivery mode (pulsed vs. continuous) effect on the synthesis of the three zeolites mentioned above was investigated. Pulsing the microwave power required less average power to maintain the synthesis reaction temperature compared to continuous delivery mode. No effect of using pulsed compared to continuous microwave power delivery was found on the nucleation time and the crystal growth for these zeolite syntheses. However, pulsed microwave power delivery produced smaller particles in the case of SAPO-11. The effect of simultaneous cooling effect on the microwave synthesis of SAPO-11 and silicalite was studied. Increasing the amount of power delivered to the SAPO-11 synthesis while maintaining the reaction temperature fixed using the simultaneous cooling, decreased the nucleation time and increased the growth rate. Smaller particles were formed at high power. Silicalite showed no change in the nucleation time, crystal growth and/or the morphology. This indicates that there is no universal pattern among the microwave synthesis of zeolites. What could be an important factor for one synthesis is not necessarily important for another, and is likely dependant on the dielectric properties and the reaction mechanism. Key words: Zeolite, SAPO-11, silicalite, NaY, microwave synthesis, nucleation, crystal growth, frequency, reactor engineering, overheating, temperature distribution, pulsing power delivery, simultaneous cooling.
6

Bench-scale assessment of low pressure membrane fouling: Characterization and examination the role of organic nitrogen compounds

Nguyen, Anh Hai 01 January 2010 (has links)
The primary goal of this research was to improve understanding of the fouling of low pressure hollow fiber membranes used in drinking water treatment. The major difference of this study compared to other reported studies was the use of a hollow fiber membrane module at operating conditions mimicking those of full-scale practice. Two poly(vinylidene-fluoroethylene) based hollow fiber membranes (A and B) were tested. Different types of fouling indices (total, hydraulic irreversible, chemical irreversible) developed based on a resistance in series model were used to assess membrane performance. Data from bench-scale and full-scale plants were compared to validate the use of fouling indices. The impact of dissolved organic nitrogen (DON) on membrane fouling was demonstrated with model waters containing humic substances and several model organic nitrogen compounds. Three different natural water sources normalized to the same organic content were tested. Fouling indices determined from the resistance in series model approach were more applicable for natural waters than for model waters. Fouling was proportional to throughput for both raw and pretreated water and at different flux rates. Pretreatment (coagulation) reduced hydraulic irreversible fouling. Most fouling was reversed by hydraulic and chemical cleaning. Specific flux and fouling indices of the bench-scale system were higher than those of the full-scale system but the fouling index ratios were comparable suggesting a similar fouling nature. A minimum of a few days of testing is recommended for longer-term membrane performance assessment. The impact of high DON concentration on membrane fouling was insignificant. Membrane fouling was dependant on foulant properties other than, or in addition to, molecular size and the DON/DOC ratio. With three different natural water sources normalized to a similar organic content, membrane fouling was specific to membrane type and water source. High initial total and hydraulic irreversible fouling rates did not lead to high chemical irreversible fouling rates. It is not possible to generalize the impact of different water sources on membrane fouling. Membrane surface anlyses showed that hydraulically irreversible organic foulants were detected as mostly hydrocarbons/polysaccharides, humic substances and peptide/protein. Humic substances and peptide/protein were found to be organic foulants regardless of their molecular weight and origin. Chemical cleaning with chlorine solution was effective in removing all inorganic foulants and most organic foulants.
7

Numerical and experimental investigation of a microalgae cultivation system for wastewater treatment and bioenergy production

Amini, Hossein 01 December 2016 (has links)
<p> Over the past decade, there has been a revival in algal research and attempts at large scale cultivation for bioenergy production. Among various types of microalgae culturing systems, Open Raceway Ponds (ORP) are considered as an economic system for large-scale microalgae cultivation. In order to improve the algal growth and productivities in ORPs, it is very important to understand the effects of design parameters and operating conditions on mixing and light distribution patterns. The goal of this dissertation was to develop computational tools and experimental techniques to assess key variables that affect algal growth and productivity, and to improve microalgal cultivation in ORPs. The effects of major parameters on growth, were investigated and the optimum C. vulgaris growth condition was determined at 52 W/m2, 24&deg;C, and pH of 7.4, using Response Surface Methodology. The C. vulgaris grown in swine wastewater with 102 mg/L nitrogen and 76 mg/L phosphorus at the optimum environmental condition achieved the average growth rate of 0.16 g/L/day, compared to 0.19 g/L/day for its growth in the modified Bold's medium with 100 mg/L nitrogen and 53 mg/L phosphorus, at the same condition. Results indicated that at NC weather conditions, C. vulgaris grown in swine wastewater in a pond with 0.3 m medium depth, can reach a biomass and lipid productivity of 80 and 20 tons/hectare/year, respectively, at the harvesting cell density of 0.1 g/L. However, the algal productivity decreased significantly with the increase of harvesting cell density. A specific growth rate model of C. vulgaris was generated as a function of light intensity, temperature and pH. A Computational Fluid Dynamics (CFD) model was developed to simulate the multiphase flow in ORPs to investigate the effects of operational conditions on biomass concentration and light intensity distribution. Operating large scale ORPs at 0.2 m/s inlet velocity resulted in a significant decrease in dead zone areas in comparison with 0.1 m/s. However, further increase in velocity to 0.3 m/s did not make significant changes. CFD models were then integrated with the growth kinetic model to simulate the dynamic growth of C. vulgaris in ORPs. The predicted algal growth and productivity well agreed with those measured values. The predicted average algal productivities for the 3-week cultivation of C. vulgaris in the lab-scale ORPs were 7.34, 7.4, and 7.46 g/m2/day for medium depths of 0.20, 0.25, and 0.30 m, respectively, which well agreed with the measured values of 6.78, 7.23 and 7.39 g/ m2/day for medium depths 0.20, 0.25, and 0.30 m, respectively. Simulations were conducted to study different harvesting methods. The average algal productivity for the 3-week cultivation in the ORP with 0.2 m depth by harvesting 50% algae at the target 0.2 g/L cell density was 10.5 g/m2/day, which was 54.7% higher than 6.78 g/ m2/day for the 3-week cultivation under the same condition without harvesting. The average algal productivity decreased with the increase of harvesting cell density.</p>
8

Heteroleptic Copper (I) Complexes as Photosensitizers in Dye-Sensitized Solar Cells / Heteroleptiska koppar(I)-komplex som fotosensibiliserare i färgämne-sensibiliserade solceller

Pizzichetti, Angela Raffaella Pia January 2019 (has links)
Modern civilization highly depends on energy and finding alternative sources to fossil fuels becomes more and more necessary. The sun is the most abundant energy source available and exploiting it efficiently would result in a great environmental and economic breakthrough. Among the photovoltaic devices, dye-sensitized solar cells (DSCs) emerged for their tremendous commercial potential deriving from a combination of low-cost production and attractive features, such as flexibility and transparency, for indoor and outdoor applications. In the DSCs, a dye anchored to a semiconductor layer (typically TiO2) is responsible for capturing the sunlight and converting it into electricity. Nevertheless, many commercially available dyes for DSCs are based on a very rare metal, ruthenium, and its replacement with a cheaper, more abundant metal is desirable. A good alternative to ruthenium could be copper, which possesses similar photophysical properties in coordination with diimine ligands, but it is considerably cheaper and relatively earth-abundant. In this work, a particular “on-surface self-assembly” strategy was employed to form, on the surface of TiO2, heteroleptic copper (I) complexes with a “push-pull” design which facilitates the electron transfer from the copper (I) complex into the conduction band of TiO2 and enhances the performance of the photovoltaic devices.This thesis focuses on the investigation of the properties of five new heteroleptic copper (I) complexes bearing the same anchoring ligand but different ancillary ligands. Because of the method employed for their synthesis, a solid-state characterization of the optical and electrochemical properties on TiO2 was performed employing tools such as UV-Vis spectroscopy, cyclic voltammetry (CV), and differential pulse voltammetry (DPV). As internal benchmark through the entire characterization, the homoleptic copper (I) complex with the anchoring ligand was also studied. Some patterns between the heteroleptic complexes on TiO2 and their respective homoleptic complexes in solution were found, opening the possibility to predict the behaviour of unknown heteroleptic complexes starting from their corresponding homoleptic. Furthermore, the characterization was necessary to ensure that the complexes were fulfilling the requirements to be employed as dyes. The performances of the heteroleptic, and of the anchoring-ligand homoleptic, copper (I) complexes were then investigated as photosensitizers in DSC devices mainly by measuring the current density-voltage (J-V) characteristics at different light intensities and in the dark, the incident photon-to-current efficiency (IPCE), and electron lifetimes. As benchmark for the degree of effectiveness of the device, the state-of-the-art ruthenium (II) complex N719 was also studied. All the copper (I) complexes showed an overall similar behaviour. The J-V characteristics showed a power conversion efficiency up to 2,05% for the best performing device, which is 25% of the efficiency of DSCs based on N719. On the other hand, the least performing heteroleptic copper (I) complex studied showed an efficiency of 1,23%. From a general analysis combining all the results obtained, it may be concluded that a reason for the limited photocurrent measured through these devices can be due to incomplete dye coverage of TiO2. Despite the lower performance compared to the standard dye N719, the simplicity of the system is promising, and its considerable economic advantage could pave the way to the use of DSCs in everyday life applications. / Modernt samhälle är mycket beroende på energi och det blir allt mer akut att hitta alternativa källor till fossila bränslen. Solen är den mest riklig energikällan som finns och att utnyttja den effektivt skulle resultera i stora miljö- och ekonomiska genombrott. Färgämne sensibiliserade solceller (”dye-sensitized solar cells”; DSC) utvecklade i 90-talet för sin breda kommersiella potential som härrör från en kombination av låg kostnadsproduktion och attraktiva egenskaper, såsom möjligheter för flexibilitet och transparens. I DSC är ett färgämne förankrat till den ytan av en halvledare (vanligtvis TiO2). Färgämnet är ansvarigt för att fånga solljuset och överföra elektronerna till halvledaren för att producera el. Många kommersiella färgämnen för DSC är baserade på rutenium, en mycket sällsynt metall. Ersättning av rutenium med en billigare, rikligmetall är önskvärt mot mer hållbara DSC. En bra alternativmetall till rutenium är koppar. Komplexen av koppar(I) har liknande fotofysiska egenskaper till rutenium (II) men koppar är mer vanlig och mindre dyr än rutenium. Heteroleptiska koppar(I) komplexen med en "push-pull" design syntetiserades på ytan av TiO2 genom "ytan assisterade självmontering". "Push-pull" designen underlättar elektronöverföring från koppar(I)-komplexet till ledningsbandet av TiO2. Denna avhandling fokuseras på undersökning av egenskaperna av fem nya heteroleptiska koppar(I) komplex med den samma förankrings ligand men olika distala ligander. På grund av metoden som används i syntesen av heteroleptiska koppar(I) komplex, var karakterisering av komplexen vid optiska och elektrokemiska metoder utfördes på TiO2. Metoderna för karakterisering var UV-Vis-spektroskopi, cyklisk voltametri (CV) och differentialpuls voltametri (DPV). Som en intern standard genom hela karaktäriseringen studerades även homoleptiska koppar(I) komplex med förankringsliganden. Egenskaperna på heteroleptiska koppar(I) komplexen på TiO2 ytan kunde förutsägas från mätning av egenskaperna på homoleptiska koppar(I) komplexen. Koppar(I) komplexen är undersöktes som fotosensibiliserare i färg-sensibiliserade solceller. Effektiviteten av solcellerna med koppar(I) komplexen eller rutenium (II) komplex (N719) utvärderades genom att mäta fotokurrentdensitetsspänningen (J-V) vid olika ljusintensiteter, incidentfoton-till-ström effektiviteten (”incident photon-to-current efficiency”; IPCE) och laddningsrekombinationen (elektronlivstiden). Koppar(I) komplexen hade övergripande liknande egenskaper i solceller. En kraft omvandlingseffektivitet av 2,05% nås för den bästa solcellen med ett koppar(I) komplex. Medan den bästa effektiviteten med N719 färgämnet var 7,57%. En svaghet i självmonteringen av koppar(I) komplexen på ytan av TiO2 är den ofullständiga bindningen till ytan men självmonteringen metoden var enkel och kunde skapa många, olika färgämnen i kort tid. Trots den lägre prestandan jämfört med standardfärgen N719 är systemets enkelhet lovande, och dess stora ekonomiska fördel kan bana vägen till användningen av DSC i vardagsläget. / La civiltà moderna è fondata sull’uso dell’energia e trovare fonti alternative ai combustibili fossili è diventato sempre più necessario. La radiazione proveniente dal sole è la risorsa energetica più abbondante e disponibile sul nostro pianeta e sfruttarla al massimo comporterebbe una svolta decisiva per l’ambiente e l’economia. Tra i dispositivi fotovoltaici, le celle di Grätzel, conosciute anche come DSC dall’acronimo inglese (dye-sensitized solar cell), sono emerse per il loro enorme potenziale commerciale, dovuto alla combinazione tra basso costo di produzione e interessanti caratteristiche, come la loro flessibilità e trasparenza, che gli conferiscono la possibilità di integrazione negli edifici e l’uso in applicazioni “indoor”. Nelle DSC, un foto-sensibilizzatore, detto anche dye, ancorato ad uno strato di un materiale semiconduttore (tipicamente TiO2), è responsabile della cattura della luce solare e della sua conversione in elettricità. Tra i dye commercialmente disponibili per le DSC vi sono per lo più complessi di coordinazione basati su un metallo molto raro, il rutenio; la sua sostituzione con un metallo più abbondante ed economico è auspicabile per la diffusione di questa tecnologia. Una buona alternativa al rutenio potrebbe essere fornita dal rame, che possiede proprietà foto-fisiche molto simili al primo quando in coordinazione con diimmine; in più è abbastanza economico e relativamente abbondante sulla Terra. Una particolare strategia di "autoassemblaggio sulla superficie" è stata impiegata per formare, sullo strato di TiO2, complessi eterolettici di rame (I) con un design “push-pull” che facilita il trasferimento di elettroni dal complesso di rame (I) alla banda di conduzione di TiO2, migliorando così le prestazioni dei dispositivi fotovoltaici. Questa tesi si concentra sullo studio delle proprietà di cinque nuovi complessi eterolettici di rame (I) che possiedono lo stesso legante di ancoraggio ma diverso legante secondario. A causa del metodo impiegato per la loro sintesi, è stato necessario eseguire la caratterizzazione delle loro proprietà ottiche ed elettrochimiche direttamente sulla superficie del TiO2, utilizzando strumenti come la spettroscopia UV-Visibile, la voltammetria ciclica (CV) e la voltammetria ad impulsi differenziali (DPV). Come riferimento interno durante l'intera caratterizzazione, è stato studiato anche il complesso di rame (I) omolettico con il legante di ancoraggio. Tra i complessi eterolettici su TiO2 e i loro rispettivi complessi omolettici in soluzione, è stato individuato un trend con la possibilità di prevedere il comportamento dei primi a partire dal loro corrispondente omolettico. Inoltre, la caratterizzazione ottica ed elettrochimica è necessaria per garantire l’adeguatezza dei complessi come dye. Le prestazioni dei complessi eterolettici e del complesso omolettico con il legante di ancoraggio, sono state quindi studiate come foto-sensibilizzatori nei dispositivi DSC; in particolare è stata misurata la curva di densità di corrente – voltaggio (J-V) a diverse intensità di luce e al buio, l’efficienza quantica esterna (EQE o dall’acronimo inglese incident photon-to-current efficiency, IPCE) e infine il tempo di vita dell’elettrone nella banda di conduzione del semiconduttore. Come standard interno, per verificare l’efficacia del dispositivo, è stato anche studiato il ben noto complesso di rutenio (II), N719. Generalmente, tutti i complessi di rame (I) hanno mostrato un comportamento simile. Le curve caratteristiche J-V hanno presentato un'efficienza pari fino al 2,05% per il complesso di rame che ha dato le prestazioni migliori (25% dell'efficienza di N719). Da un'analisi generale che combina tutti i risultati ottenuti, si può concludere che una ragione per cui la foto-corrente risulta limitata potrebbe essere data dall’incompleta copertura del TiO2 da parte del complesso di rame (I) e quindi dallo scarso adsorbimento del dye. Nonostante le prestazioni inferiori rispetto allo standard N719, la semplicità del sistema è promettente e il suo notevole vantaggio economico potrebbe aprire la strada all'utilizzo delle DSC nelle applicazioni della vita quotidiana.

Page generated in 0.4647 seconds