Spelling suggestions: "subject:"bohemical equilibria"" "subject:"semichemical equilibria""
1 |
Radiochemical analysis of protactinium speciation: applications in nuclear forensics, nuclear energy, and environmental radiochemistryKnight, Andrew William 01 December 2016 (has links)
Protactinium (Pa) is an actinide with chemical properties that are unique among the actinide elements. While the properties of other actinides are to a large extent understood, much of the chemistry of Pa remains a mystery. This thesis aims to illuminate new understanding of Pa chemistry through behavioral analysis using analytical techniques including liquid-liquid extraction (LL); extraction chromatography (ExC); and spectroscopic studies.
Applications of radioanalytical chemistry and Pa: Through the research presented in this dissertation, we have developed a new way to separate uranium (U), thorium (Th), and Pa from complex environmental samples. The approach has been demonstrated for U-series dating of materials by alpha spectrometry. The method can be applied to geochronology, as well as to nuclear-forensic analysis of uranium-containing materials. In studies presented here, samples from a Paleolithic lake (Lake Bonneville, Utah USA) were analyzed for the radioactivity concentration of 230Th, 231Pa, 234U, 235U, and 238U by isotope dilution alpha spectrometry. Radioactivities were used to estimate of the time period of formation of the deposit from which the samples were collected. Ages were determined from the isotopics ratios; i.e., 231Pa/235U (40 ka); and 230Th/238U (39.5 ka) we found to be concordant with radiocarbon-14 dates (37 ka) obtained by collaborators at Brigham Young University. These studies inspired the development of a novel ExC resin to facilitate preparation of highly pure tracer isotope (233Pa) from a neptunium-237 (237Np) source. The material used for this development comprised 1-octanol adsorbed to a semi-porous resin material. The new approach greatly improved the yield and purity of 233Pa used for these chronometric analyses
Developing an understanding of the chemistry of Pa at trace concentrations: The new-improved analytical described above led to the hypothesis that analytical separations approaches could be used to develop a more detailed understanding of Pa chemistry. Toward this goal, experiments were conducted to understand how the extraction of Pa is impacted by solution acidity [H+], anion concentration [A-; Cl-, NO3-], and extractant concentration ([2,6-dimethyl-4-heptanol, DIBC]). A full-factorial experimental design was employed to create a model that would allow for predictions in Pa behavior, as well as describe the nature of the observations. This model generated a multivariate equation that relates the distribution coefficient ([Pa] organic phase/ [Pa] aqueous phase) to each of the parameters ([H+], [A-], and [DIBC]). Further studies expanded to other alcohols (ROH) used as extractants (1-octanol, (2,6)-dimthyl-4-heptanol, and 2-ethyl-hexanol); and the results were analyzed using the slope analysis and comparative extraction studies using the model and compared to other actinide elements (Th, U, Np, americium (Am)) by both LL and ExC systems. These experiments revealed unique chemical behavior of Pa with respect to the other actinides. For example, it was found that Pa was the only actinide element to be extracted into the organic phase under acidic conditions (HCl and HNO3). Slope analysis experiments elucidated the stoichiometric identity of Pa species, with respect to the anion and extractant. Future studies will aim to identify the oxygen stoichiometry and species by X-ray absorption techniques.
Investigations of the organic phase: In the final sections of this thesis, experiments are presented that are intended to determine if aggregation plays a key role in the extraction of Pa in systems containing 1-octanol and 2-ethyl-hexanol. This work is done in the absence of metal ions to control the dynamics of the organic phase, and are analyzed by tensiometry and Karl Fisher titrations with small angle X-ray scattering and molecular dynamic simulations. A key novel finding of these studies in that ROH molecules arrange in nanoscale aggregates that decrease the interfacial tension between the phases and extract a significant amount of water into the aggregates stabilized by a network of H-bonding. These studies lead to the hypothesis for future studies that Pa extraction is likely facilitated by solvation into the organic phase via ROH aggregates.
The sum of the findings and observations of this dissertation provide insight into the chemical nature of Pa: (1) Novel extraction methods to obtain radiochemically pure fractions show that Pa can be efficiently extracted and separated from complex matrices to aid in chronometric analysis for geochronology or nuclear forensics; (2) Statistical modeling to develop a better understanding of the main effects of solvent extraction parameters; (3) Equilibrium analysis to improve our understanding of chemistry of Pa and how it is unique to the actinides; (4) Aggregation analysis to demonstrate a solvent centric understanding of extraction studies, these results lead to future experiments to investigate how organic phase aggregation can influence solvent extraction selectivity.
|
2 |
The generation and application of metallurgical thermodynamic dataDinsdale, A. T. January 1984 (has links)
The power of thermodynamics in the calculation of complex chemical and metallurgical equilibria of importance to industry has, over the last 15 years, been considerably enhanced by the availability of computers. It has resulted in the storage of data in databanks, the use of physical but complex models to represent thermodynamic data, the vast effort spent in the generation of critically assessed data and the development of sophisticated software for their application in equilibrium calculations. This thesis is concerned with the generation and application of metallurgical thermodynamic data in which the computer plays a central and essential role. A very wide range of topics have been covered from the generation of data by experiment and critical assessment through to the application of these data in calculations of importance to industry. Particular emphasis is placed on the need for reliable models and expressions which can represent the molar Gibbs energy as a function of temperature and composition. In addition a new computer program is described and used for the automatic calculation of phase diagrams for binary systems. Measurements of the enthalpies of formation of alloys in the Fe-Ti system are reported. All data for this system have been critically assessed to provide a dataset consistent with the published phase diagram. Critically assessed data for a number of binary alloy systems have been combined in order to perform quantitative calculations in two types of steel system. Firstly data for the Cr-Fe-Ni-Si-Ti system have been used to provide information about the long term stability of alloys used in fast breeder nuclear reactors. Secondly very complex calculations involving nine elements have been made to predict the distribution of carbon and various impurities between competing phases in low alloy steels on the addition of Mischmetall. Finally a new model is developed to represent the thermodynamic data for sulphide liquids and is used in the critical assessment and calculation of data for the Cu-Fe-Ni-S system. The phase diagram and thermodynamic data calculated from the assessed data are in excellent agreement with those observed experimentally. The work reported in this thesis, whilst successful, has also indicated areas which will benefit from further study particularly the development of reliable data and models for pure elements, ordered solid phases and liquid phases for high affinity systems.
|
3 |
Conceptual design of gasification-based biorefineries using the C-H-O ternary diagramLitheko, Lefu Andrew 10 1900 (has links)
This dissertation develops a systematic targeting method based on the C-H-O ternary diagram for the conceptual design of gasification-based biorefineries. The approach is applied using dimethyl ether (DME) as case study. A stoichiometric equilibrium model is presented for calculation of the C-H-O chemical equilibria to evaluate and predict equilibrium syngas composition, operating temperature, type and amount of oxidant required in biomass gasification. Overall atomic species balances are developed and process targets are plotted on the C-H-O ternary diagram. Sustainability metrics are incorporated to provide useful insights into the efficiency of biorefinery process targets. It was found that syngas at 1200 and 1500 K is predominantly H2 and CO. Moreover, DME biorefineries have two main process targets, based on the indirect and direct synthesis routes. Gasification at 1200 K and 1 atm. using H2O/CO2 = 2.642 (w/w) and H2O/CH4 = 1.645 (w/w) achieved syngas composition targets for the direct and indirect methods respectively. Comparatively, the integrated biorefinery based on indirect route was more efficient, producing 1.903 ton of DME per ton of biomass feedstock. The process is 100% carbon-efficient and recycles 1.025 tons of H2O. / Civil and Chemical Engineering / M. Tech. (Chemical Engineering)
|
4 |
STUDY OF THE TRANSPORT OF HEAVY METAL IONS THROUGH CATION-EXCHANGE MEMBRANES APPLIED TO THE TREATMENT OF INDUSTRIAL EFFLUENTSMartí Calatayud, Manuel César 12 January 2015 (has links)
La presente Tesis Doctoral consiste en la determinación de las propiedades de transporte de diferentes especies catiónicas a través de membranas de intercambio catiónico. Las membranas de intercambio iónico son un componente clave de los reactores electroquímicos y de los sistemas de electrodiálisis, puesto que determinan el consumo energético y la eficiencia del proceso. La utilización de este tipo de membranas para el tratamiento de efluentes industriales no es muy extendida debido a los requisitos de elevada resistencia química y durabilidad que deben cumplir las membranas. Otro asunto importante radica en la eficiencia en el transporte de los iones que se quieren eliminar a través de la membrana. Normalmente, existe una competencia por el paso a través de las membranas entre diferentes especies debido al carácter multicomponente de los efluentes a tratar. Sin embargo, una mejora en las propiedades de las membranas de intercambio iónico permitiría la implantación del tratamiento mediante reactores electroquímicos de efluentes industriales con un contenido importante en compuestos metálicos, tales como los baños agotados de las industrias de cromado. La utilización de una tecnología limpia como la electrodiálisis conllevaría diferentes ventajas, entre las cuales destacan la recuperación de los efluentes para su reutilización en el proceso industrial, el ahorro en el consumo de agua y la disminución de la descarga de contaminantes al medio ambiente.
La determinación de las condiciones de operación óptimas así como la mejora de las propiedades de transporte de las membranas constituye el principal tema de la presente investigación. Para ello, se emplearán diferentes tipos de membrana. En primer lugar, se estudiará el comportamiento de las membranas poliméricas comerciales que poseen unas propiedades de resistencia química elevadas, las cuales se tomarán como referencia. De forma paralela, se producirán membranas conductoras de iones a partir de materiales cerámicos económicos, ya que la resistencia de los materiales cerámicos a sustancias oxidantes y muy ácidas es mayor que la de los materiales poliméricos. Este punto constituye la parte más innovadora de la investigación, puesto que la mayoría de las membranas de intercambio iónico comerciales están basadas en materiales poliméricos que no pueden resistir las condiciones específicas de los efluentes industriales. Una vez determinadas las condiciones de operación óptimas, se realizarán ensayos en plantas piloto con el fin de confirmar los resultados obtenidos mediante las técnicas de caracterización y determinar el grado de recuperación y coste energético asociado a los procesos electrodialíticos de tratamiento de efluentes industriales. / Martí Calatayud, MC. (2014). STUDY OF THE TRANSPORT OF HEAVY METAL IONS THROUGH CATION-EXCHANGE MEMBRANES APPLIED TO THE TREATMENT OF INDUSTRIAL EFFLUENTS [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/46004 / Premios Extraordinarios de tesis doctorales
|
Page generated in 0.0741 seconds