• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Bioaugmentation of coal gasification stripped gas liquor wastewater in a hybrid fixed-film bioreactor

Rava, Eleonora Maria Elizabeth January 2017 (has links)
Coal gasification stripped gas liquor (CGSGL) wastewater contains large quantities of complex organic and inorganic pollutants which include phenols, ammonia, hydantoins, furans, indoles, pyridines, phthalates and other monocyclic and polycyclic nitrogen-containing aromatics, as well as oxygen- and sulphur-containing heterocyclic compounds. The performance of most conventional aerobic systems for CGSGL wastewater is inadequate in reducing pollutants contributing to chemical oxygen demand (COD), phenols and ammonia due to the presence of toxic and inhibitory organic compounds. There is an ever-increasing scarcity of freshwater in South Africa, thus reclamation of wastewater for recycling is growing rapidly and the demand for higher effluent quality before being discharged or reused is also increasing. The selection of hybrid fixed-film bioreactor (HFFBR) systems in the detoxification of a complex mixture of compounds such as those found in CGSGL has not been investigated. Thus, the objective of this study was to investigate the detoxification of the CGSGL in a H-FFBR bioaugmented with a mixed-culture inoculum containing Pseudomonas putida, Pseudomonas plecoglossicida, Rhodococcus erythropolis, Rhodococcus qingshengii, Enterobacter cloacae, Enterobacter asburiae strains of bacteria, as well as the seaweed (Silvetia siliquosa) and diatoms. The results indicated a 45% and 79% reduction in COD and phenols, respectively, without bioaugmentation. The reduction in COD increased by 8% with inoculum PA1, 13% with inoculum PA2 and 7% with inoculum PA3. Inoculum PA1 was a blend of Pseudomonas, Enterobacter and Rhodococcus strains, inoculum PA2 was a blend of Pseudomonas putida iistrains and inoculum PA3 was a blend of Pseudomonas putida and Pseudomonas plecoglossicida strains. The results also indicated that a 70% carrier fill formed a dense biofilm, a 50% carrier fill formed a rippling biofilm and a 30% carrier fill formed a porous biofilm. The autotrophic nitrifying bacteria were out-competed by the heterotrophic bacteria of the genera Thauera, Pseudaminobacter, Pseudomonas and Diaphorobacter. Metagenomic sequencing data also indicated significant dissimilarities between the biofilm, suspended biomass, effluent and feed microbial populations. A large population (20% to 30%) of unclassified bacteria were also present, indicating the presence of novel bacteria that may play an important role in the treatment of the CGSGL wastewater. The artificial neural network (ANN) model developed in this study is a novel virtual tool for the prediction of COD and phenol removal from CGSGL wastewater treated in a bioaugmented H-FFBR. Knowledge extraction from the trained ANN model showed that significant nonlinearities exist between the H-FFBR operational parameters and the removal of COD and phenol. The predictive model thus increases knowledge of the process inputs and outputs and thus facilitates process control and optimisation to meet more stringent effluent discharge requirements. / Thesis (PhD)--University of Pretoria, 2017. / Chemical Engineering / PhD / Unrestricted
2

Efficiency of soil aquifer treatment in the removal of wastewater contaminants and endocrine disruptors : a study on the removal of triclocarban and estrogens and the effect of chemical oxygen demand and hydraulic loading rates on the reduction of organics and nutrients in the unsaturated and saturated zones of the aquifer

Essandoh, Helen Michelle Korkor January 2011 (has links)
This study was carried out to evaluate the performance of Soil Aquifer Treatment (SAT) under different loading regimes, using wastewater of much higher strength than usually encountered in SAT systems, and also to investigate the removal of the endocrine disruptors triclocarban (TCC), estrone (E1), 17β-estradiol (E2) and 17α-ethinylestradiol (EE2). SAT was simulated in the laboratory using a series of soil columns under saturated and unsaturated conditions. Investigation of the removal of Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD), Dissolved Organic Carbon (DOC), nitrogen and phosphate in a 2 meter long saturated soil column under a combination of constant hydraulic loading rates (HLRs) and variable COD concentrations as well as variable HLR under constant COD showed that at fixed HLR, a decrease in the influent concentrations of DOC, BOD, total nitrogen and phosphate improved their removal efficiencies. It was found that COD mass loading applied as low COD wastewater infiltrated over short residence times would provide better effluent quality than the same mass applied as a COD with higher concentration at long residence times. On the other hand relatively high concentrations coupled with long residence time gave better removal efficiency for organic nitrogen. Phosphate removal though poor under all experimental conditions, was better at low HLRs. In 1 meter saturated and unsaturated soil columns, E2 was the most easily removed estrogen, while EE2 was the least removed. Reducing the thickness of the unsaturated zone had a negative impact on removal efficiencies of the estrogens whereas increased DOC improved the removal in the saturated columns. Better removal efficiencies were also obtained at lower HLRs and in the presence of silt and clay. Sorption and biodegradation were found to be responsible for TCC removal in a 300 mm long saturated soil column, the latter mechanism however being unsustainable. TCC removal efficiency was dependent on the applied concentration and decreased over time and increased with column depth. Within the duration of the experimental run, TCC negatively impacted on treatment performance, possibly due to its antibacterial property, as evidenced by a reduction in COD removals in the column. COD in the 2 meter column under saturated conditions was modelled successfully with the advection dispersion equation with coupled Monod kinetics. Empirical models were also developed for the removal of TCC and EE2 under saturated and unsaturated conditions respectively. The empirical models predicted the TCC and EE2 removal profiles well. There is however the need for validation of the models developed
3

Optimizing Sample Dissolution Methods of Low Water Soluble Intermediate Organic Compounds to Support Environmental Risk Assessment during Active Pharmaceutical Ingredient Manufacturing.

Mohammed, Warda January 2021 (has links)
This project focus on investigating the dissolution of low water-soluble intermediate organic compounds called active pharmaceutical ingredients (API) and organic substances that are manufactured by a pharmaceutical company, Cambrex Karlskoga in Sweden. Several dissolution methods were used and evaluated using methods including total organic carbon (TOC), chemical oxygen demand (COD), biochemical oxygen demand (BOD) and Microtox toxicity test. The selection of solvents were based on previous studies and specifications from the Swedish Institute of Standards, SIS.The performance of eight solvents for different organic substances were evaluated using the above mentioned methods. Solvents that are highly volatile and have low solubility in water were excluded. Therefore, dimethyl sulfoxide (DMSO), dimethylformamide (DMF) and Pluronic F-68, that had highest water solubility, low acute toxicity and not degradable by microorganisms, were further used to dissolve four organic substances. Furthermore, DMSO and DMF were then also used to dissolve four censored chemicals with addition of physical treatment and solvent mixtures (DMF:DMSO with ratio 1:2).Results from each method were discussed and statistical tests were also performed in order to compare different dissolution methods. In addition, quality control and quality assurance were made in order to ensure the quality of measured values from analytical methods. Four organic substances were dissolve in DMSO, DMF and Pluronic F-68 with dissolution ≥79% using six ratios of DMSO and DMF and five ratios of Pluronic F-68 which were analyzed using TOC. Physical treatment increased dissolution of two APIs with 40%. Using BOD, para-aminobenzonic acid (PABA) and 5-nitroisophthalic acid (5-NIPA) had values higher than the guideline values, which indicate high biodegradability of these organic substances. PABA, 5-NIPA and bupivacaine base were acute toxic where PABA showed EC50 values of 27.9 mg/L using DMSO and 36.0 mg/L using DMF, and EC50 values of 5-NIPA were 102 mg/L using DMSO and 84.0 mg/L using DMF, and bupivacaine base had EC50 value of 174 mg/L using solvent mixture (DMF:DMSO with ratio 1:2). With increasing amount of Pluronic F-68, 5-NIPA had increased values of EC50, thereby Pluronic F-68 was not appropriate to use.In conclusion, DMSO and DMF were most appropriate solvents to use in order to dissolve APIs and organic substances with analyte: DMSO ratio of 1:0.5 and analyte: DMF ratio of 1:0.25. In addition, physical treatment could be used in order to increase dissolution of the APIs.
4

Efficiency of soil aquifer treatment in the removal of wastewater contaminants and endocrine disruptors. A study on the removal of triclocarban and estrogens and the effect of chemical oxygen demand and hydraulic loading rates on the reduction of organics and nutrients in the unsaturated and saturated zones of the aquifer.

Essandoh, Helen M.K. January 2011 (has links)
This study was carried out to evaluate the performance of Soil Aquifer Treatment (SAT) under different loading regimes, using wastewater of much higher strength than usually encountered in SAT systems, and also to investigate the removal of the endocrine disruptors triclocarban (TCC), estrone (E1), 17¿-estradiol (E2) and 17¿- ethinylestradiol (EE2). SAT was simulated in the laboratory using a series of soil columns under saturated and unsaturated conditions. Investigation of the removal of Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD), Dissolved Organic Carbon (DOC), nitrogen and phosphate in a 2 meter long saturated soil column under a combination of constant hydraulic loading rates (HLRs) and variable COD concentrations as well as variable HLR under constant COD showed that at fixed HLR, a decrease in the influent concentrations of DOC, BOD, total nitrogen and phosphate improved their removal efficiencies. It was found that COD mass loading applied as low COD wastewater infiltrated over short residence times would provide better effluent quality than the same mass applied as a COD with higher concentration at long residence times. On the other hand relatively high concentrations coupled with long residence time gave better removal efficiency for organic nitrogen. Phosphate removal though poor under all experimental conditions, was better at low HLRs. In 1 meter saturated and unsaturated soil columns, E2 was the most easily removed estrogen, while EE2 was the least removed. Reducing the thickness of the unsaturated zone had a negative impact on removal efficiencies of the estrogens whereas increased DOC improved the removal in the saturated columns. Better removal efficiencies were also obtained at lower HLRs and in the presence of silt and clay. Sorption and biodegradation were found to be responsible for TCC removal in a 300 mm long saturated soil column, the latter mechanism however being unsustainable. TCC removal efficiency was dependent on the applied concentration and decreased over time and increased with column depth. Within the duration of the experimental run, TCC negatively impacted on treatment performance, possibly due to its antibacterial property, as evidenced by a reduction in COD removals in the column. COD in the 2 meter column under saturated conditions was modelled successfully with the advection dispersion equation with coupled Monod kinetics. Empirical models were also developed for the removal of TCC and EE2 under saturated and unsaturated conditions respectively. The empirical models predicted the TCC and EE2 removal profiles well. There is however the need for validation of the models developed / Netherlands Organisation for International Cooperation in Higher Education (Nuffic) / The Appendix files for this thesis are unavailable online via Bradford Scholars.
5

Satsvisa laboratorieförsök för utvärdering av kolkällor i denitrifikation / Lab-scale batch experiments for evaluation of carbon sources in denitrification

Tejde, Lisa January 2022 (has links)
I takt med att Uppsala växer behöver kapaciteten för avloppsvattenrening på Kungsängsverket byggas ut. För att möta en framtida ökad belastning bedömer Uppsala Vatten & Avfall AB att en kolkälla kommer behöva tillsättas i den biologiska kvävereningen för att effektivisera den heterotrofa denitrifikationen på Kungsängsverket, som idag sker utan tillsats av kolkälla. Potentialen till förbättrad denitrifikation med olika kolkällor utvärderades genom satsvisa laboratorieförsök och litteraturstudier. Syftet var att bättre förstå de studerade kolkällornas funktion och prestanda i denitrifikation för att ge underlag inför en framtida fullskalig implementering av kolkälla. Det övergripande målet var att identifiera vilken eller vilka kolkällor som är mest fördelaktiga med avseende på reningseffektivitet, processpåverkan, doseringsbehov, ekonomi och miljöpåverkan. Triplikata försök genomfördes som denitrifikationstester med aktivt slam vid en genomsnittlig slamtemperatur på 14 ℃ och pH 7-8, där fem externa kolkällor (etanol, Brenntaplus VP1 och tre industriella restprodukter) samt försedimenterat avloppsvatten testades. I litteraturstudien inkluderades även metanol. Från försöksdata bestämdes specifika denitrifikationshastigheter, COD/N-kvoter och utbyteskoefficienter. Även bieffekter såsom nitritackumulering och fosforsläpp studerades. Därefter uppskattades doseringsbehov och kostnader baserat på erhållna resultat och antaganden om framtida produktionsmål för nitratkväve. En likartad prestanda erhölls med en av restprodukterna (RTP-vätska) och etanol som uppnådde högst denitrifikationshastigheter och reduktionsgrader (98 % respektive 97 %). Doseringsbehovet uppskattades vara 4 gånger högre med RTP-vätska jämfört med etanol. Med de två andra restprodukterna (dextrandrank och sackaroslösning) uppnåddes lägst denitrifikationseffektivitet och reduktionsgraderna uppgick till 79 % respektive 47 %. Vid test av sackaroslösning observerades dessutom ofullständig denitrifikation samt höga fosforsläpp. Dextrandranken uppträdde på liknande sätt. I egenskap av restprodukt är RTP-vätskan intressant för fortsatt utvärdering. Fullskalig implementering av RTP-vätska förutsätter att doseringsbehoven kan tillgodoses samt att lämplig distribuering och lagerhållning kan ordnas på Kungsängsverket. / The city of Uppsala is expanding and consequently enhanced capacity at the wastewater treatment plant of Kungsängen will be required in the future. As for the biological nitrogen removal process, Uppsala Vatten & Avfall AB expects an additional carbon source to be necessary in the future denitrification process. Currently, the nitrogen removal is employed without the addition of a carbon source. The potential of enhancing denitrification with different carbon sources was evaluated by conducting lab-scale batch tests and compiling literature data. The objective of this work was to better understand the performance of the chosen carbon sources as electron donors in heterotrophic denitrification and thereby provide groundwork for a future full-scale implementation of a carbon source. Based on information drawn from batch tests and literature, the carbon sources were evaluated with respect to removal efficiency, process compliance, quantitative dosing requirements, costs, and environmental sustainability. Lab-scale trials were conducted as denitrification tests (triplicate) at a mean sludge temperature of 14 ℃ and pH 7-8 with five external carbon sources (ethanol, Brenntaplus VP1, and three industrial waste products) and pretreated wastewater. In the literature review, methanol was included as well. Results obtained from the batch tests were used to determine kinetic parameters, mainly specific denitrification rates, COD/N ratios, and anoxic yield coefficients. Moreover, unwanted side effects due to addition of carbon sources were examined. Dosing requirements and costs were assessed based on previously determined kinetic parameters and supposed future production guidelines for effluent quality with respect to nitrate concentration. Similar performance was observed with one of the waste products (RTP liquid) and ethanol which achieved the highest denitrification rates and degree of removal (98 and 97 %, respectively). The estimated dosing requirement was 4 times higher with the RTP liquid compared to ethanol. The other two waste products, solutions of fructose (dextran) and sucrose, reached the lowest denitrification efficiency and removal degrees were 79 and 47 %, respectively. During tests with sucrose solution, incomplete denitrification and release of phosphorous were observed. The fructose solution showed somewhat similar behavior but to a lesser degree. Being a waste product, the RTP liquid is interesting for future evaluation. Full-scale implementation needs further considerations regarding dosing requirements, distribution, and storage conditions at the site of Kungsängsverket.

Page generated in 0.0933 seconds