Spelling suggestions: "subject:"text generation sequencing (NGS)"" "subject:"next generation sequencing (NGS)""
1 |
Next generation sequencing identifies ‘interactome’ signatures in relapsed and refractory metastatic colorectal cancerJohnson, Benny, Cooke, Laurence, Mahadevan, Daruka 02 1900 (has links)
Background: In the management of metastatic colorectal cancer (mCRC), KRAS, NRAS and BRAF mutational status individualizes therapeutic options and identify a cohort of patients (pts) with an aggressive clinical course. We hypothesized that relapsed and refractory mCRC pts develop unique mutational signatures that may guide therapy, predict for a response and highlight key signaling pathways important for clinical decision making. Methods: Relapsed and refractory mCRC pts (N=32) were molecularly profiled utilizing commercially available next generation sequencing (NGS) platforms. Web-based bioinformatics tools (Reactome/Enrichr) were utilized to elucidate mutational profile linked pathways-networks that have the potential to guide therapy. Results: Pts had progressed on fluoropyrimidines, oxaliplatin, irinotecan, bevacizumab, cetuximab and/or panitumumab. Most common histology was adenocarcinoma (colon N=29; rectal N=3). Of the mutations TP53 was the most common, followed by APC, KRAS, PIK3CA, BRAF, SMAD4, SPTA1, FAT1, PDGFRA, ATM, ROS1, ALK, CDKN2A, FBXW7, TGFBR2, NOTCH1 and HER3. Pts had on average had >= 5 unique mutations. The most frequent activated signaling pathways were: HER2, fibroblast growth factor receptor (FGFR), p38 through BRAF-MEK cascade via RIT and RIN, ARMS-mediated activation of MAPK cascade, and VEGFR2. Conclusions: Dominant driver oncogene mutations do not always equate to oncogenic dependence, hence understanding pathogenic ` interactome(s)' in individual pts is key to both clinically relevant targets and in choosing the next best therapy. Mutational signatures derived from corresponding ` pathway-networks' represent a meaningful tool to (I) evaluate functional investigation in the laboratory; (II) predict response to drug therapy; and (III) guide rational drug combinations in relapsed and refractory mCRC pts.
|
2 |
Computational methods for RNA integrative biologySelega, Alina January 2018 (has links)
Ribonucleic acid (RNA) is an essential molecule, which carries out a wide variety of functions within the cell, from its crucial involvement in protein synthesis to catalysing biochemical reactions and regulating gene expression. Such diverse functional repertoire is indebted to complex structures that RNA can adopt and its flexibility as an interacting molecule. It has become possible to experimentally measure these two crucial aspects of RNA regulatory role with such technological advancements as next-generation sequencing (NGS). NGS methods can rapidly obtain the nucleotide sequence of many molecules in parallel. Designing experiments, where only the desired parts of the molecule (or specific parts of the transcriptome) are sequenced, allows to study various aspects of RNA biology. Analysis of NGS data is insurmountable without computational methods. One such experimental method is RNA structure probing, which aims to infer RNA structure from sequencing chemically altered transcripts. RNA structure probing data is inherently noisy, affected both by technological biases and the stochasticity of the underlying process. Most existing methods do not adequately address the issue of noise, resorting to heuristics and limiting the informativeness of their output. In this thesis, a statistical pipeline was developed for modelling RNA structure probing data, which explicitly captures biological variability, provides automated bias-correcting strategies, and generates a probabilistic output based on experimental measurements. The output of our method agrees with known RNA structures, can be used to constrain structure prediction algorithms, and remains robust to reduced sequence coverage, thereby increasing sensitivity of the technology. Another recent experimental innovation maps RNA-protein interactions at very high temporal resolution, making it possible to study rapid binding events happening on a minute time scale. In this thesis, a non-parametric algorithm was developed for identifying significant changes in RNA-protein binding time-series between different conditions. The method was applied to novel yeast RNA-protein binding time-course data to study the role of RNA degradation in stress response. It revealed pervasive changes in the binding to the transcriptome of the yeast transcription termination factor Nab3 and the cytoplasmic exoribonuclease Xrn1 under nutrient stress. This challenged the common assumption of viewing transcriptional changes as the major driver of changes in RNA expression during stress and highlighted the importance of degradation. These findings inspired a dynamical model for RNA expression, where transcription and degradation rates are modelled using RNA-protein binding time-series data.
|
3 |
Decoding the regulatory role and epiclonal dynamics of DNA methylation in 1482 breast tumoursBatra, Rajbir Nath January 2018 (has links)
Breast cancer is a clinically and molecularly heterogeneous disease displaying distinct therapeutic responses. Although recent studies have explored the genomic and transcriptomic landscapes of breast cancer, the epigenetic architecture has received less attention. To address this, an optimised Reduced Representation Bisulfite Sequencing protocol was performed on 1482 primary breast tumours (and 237 matched adjacent normal tissues). This constitutes the largest breast cancer methylome yet, and this thesis describes the bioinformatics and statistical analysis of this study. Noticeable epigenetic drift (both gain and loss of homogeneous DNA methylation patterns) was observed in breast tumours when compared to normal tissues, with markedly higher differences in late replicating genomic regions. The extent of epigenetic drift was also found to be highly heterogeneous between the breast tumours and was sharply correlated with the tumour’s mitotic index, indicating that epigenetic drift is largely a consequence of the accumulation of passive cell division related errors. A novel algorithm called DMARC (Directed Methylation Altered Regions in Cancer) was developed that utilised the tumour-specific drift rates to discriminate between methylation alterations attained as a consequence of stochastic cell division errors (background) and those reflecting a more instructive biological process (directed). Directed methylation alterations were significantly enriched for gene expression changes in breast cancer, compared to background alterations. Characterising these methylation aberrations with gene expression led to the identification of breast cancer subtype-specific epigenetic genes with consequences on transcription and prognosis. Cancer genes may be deregulated by multiple mechanisms. By integrating with existing copy number and gene expression profiles for these tumours, DNA methylation alterations were revealed as the predominant mechanism correlated with differentially expressed genes in breast cancer. The crucial role of DNA methylation as a mechanism to target the silencing of specific genes within copy number amplifications is also explored which led to the identification of a putative tumour suppressor gene, THSZ2. Finally, the first genome-wide assessment of epigenomic evolution in breast cancer is conducted. Both, the level of intratumoural heterogeneity, and the extent of epiallelic burden were found to be prognostic, and revealed an extraordinary distinction in the role of epiclonal dynamics in different breast cancer subtypes. Collectively, the results presented in this thesis have shed light on the somatic DNA methylation basis of inter-patient as well as intra-tumour heterogeneity in breast cancer. This complements our genetic knowledge of the disease, and will help move us towards tailoring treatments to the patient's molecular profile.
|
4 |
Bioaugmentation of coal gasification stripped gas liquor wastewater in a hybrid fixed-film bioreactorRava, Eleonora Maria Elizabeth January 2017 (has links)
Coal gasification stripped gas liquor (CGSGL) wastewater contains large quantities of complex organic and inorganic pollutants which include phenols, ammonia, hydantoins, furans, indoles, pyridines, phthalates and other monocyclic and polycyclic nitrogen-containing aromatics, as well as oxygen- and sulphur-containing heterocyclic compounds. The performance of most conventional aerobic systems for CGSGL wastewater is inadequate in reducing pollutants contributing to chemical oxygen demand (COD), phenols and ammonia due to the presence of toxic and inhibitory organic compounds. There is an ever-increasing scarcity of freshwater in South Africa, thus reclamation of wastewater for recycling is growing rapidly and the demand for higher effluent quality before being discharged or reused is also increasing. The selection of hybrid fixed-film bioreactor (HFFBR) systems in the detoxification of a complex mixture of compounds such as those found in CGSGL has not been investigated. Thus, the objective of this study was to investigate the detoxification of the CGSGL in a H-FFBR bioaugmented with a mixed-culture inoculum containing Pseudomonas putida, Pseudomonas plecoglossicida, Rhodococcus erythropolis, Rhodococcus qingshengii, Enterobacter cloacae, Enterobacter asburiae strains of bacteria, as well as the seaweed (Silvetia siliquosa) and diatoms. The results indicated a 45% and 79% reduction in COD and phenols, respectively, without bioaugmentation. The reduction in COD increased by 8% with inoculum PA1, 13% with inoculum PA2 and 7% with inoculum PA3. Inoculum PA1 was a blend of Pseudomonas, Enterobacter and Rhodococcus strains, inoculum PA2 was a blend of Pseudomonas putida iistrains and inoculum PA3 was a blend of Pseudomonas putida and Pseudomonas plecoglossicida strains. The results also indicated that a 70% carrier fill formed a dense biofilm, a 50% carrier fill formed a rippling biofilm and a 30% carrier fill formed a porous biofilm. The autotrophic nitrifying bacteria were out-competed by the heterotrophic bacteria of the genera Thauera, Pseudaminobacter, Pseudomonas and Diaphorobacter. Metagenomic sequencing data also indicated significant dissimilarities between the biofilm, suspended biomass, effluent and feed microbial populations. A large population (20% to 30%) of unclassified bacteria were also present, indicating the presence of novel bacteria that may play an important role in the treatment of the CGSGL wastewater. The artificial neural network (ANN) model developed in this study is a novel virtual tool for the prediction of COD and phenol removal from CGSGL wastewater treated in a bioaugmented H-FFBR. Knowledge extraction from the trained ANN model showed that significant nonlinearities exist between the H-FFBR operational parameters and the removal of COD and phenol. The predictive model thus increases knowledge of the process inputs and outputs and thus facilitates process control and optimisation to meet more stringent effluent discharge requirements. / Thesis (PhD)--University of Pretoria, 2017. / Chemical Engineering / PhD / Unrestricted
|
5 |
Screening von Kandidatengenen (CPLX1, SCIN) für Epileptische EnzephalopathieSchreyer, Nicole 27 April 2020 (has links)
No description available.
|
6 |
Molecular characterization of full genome hepatitis b virus sequences from an urban hospital cohort in Pretoria, South AfricaLe Clercq, Louis Stephanus January 2014 (has links)
Hepatitis B Virus (HBV) is a DNA virus and belongs to the genus
Orthohepadnavirus of the Hepadnaviridae family which represents one of two
animal viruses with a DNA genome which replicates by reverse transcription of a
viral RNA intermediate. Nucleotide variation led to further sub-classification into
8 genotypes (A to H). The reverse transcription step within its life cycle is prone
to the introduction of errors and recombination when dually infected. This leads to
a viral quasispecies which forms during the course of infection with many minor
population variants; such variants can however only be detected by means of
ultra-deep sequencing. A recent study in the Department of Medical Virology
(UP) by Mayaphi et al. identified a number of the specimens that partitioned away
from the typical subgenotype A1 clades with high bootstrap values and longer
branch lengths. Thus, the main objective of the current study was to characterize
the full genome of all variants for the outliers observed in the aforementioned study, inclusive of potential recombination, dual infection and minor populations.
Twenty samples were selected from a previous cohort for purposes of the present
study. The viral DNA was extracted and amplified by PCR according to the
methods described by Günther et al. with modified primer sets. Nineteen of the
samples were successfully amplified and 15 of these were sequenced. Specimens
were sequenced by NGS on the Illumina MiSeq™ sequencer and sequence data
used to reconstruct the viral quasispecies of each specimen. Further analyses of
the reconstructed variants included molecular characterization as well as
phylogenetic analysis and screening for recombination and drug resistance
mutations. Full genome coverage was obtained for twelve of the fifteen samples
and full genome variants reconstructed, generating nearly 40 full genomes.
Phylogenetic analysis showed that the majority of the samples are of genotype A,
more specifically of subgenotype A1, differing by less than 4% from known
sequences. The phylogenetic analysis revealed a similar clade of outliers, where
four samples clustered together with significant bootstrap support (75%) and a
fifth sample partitioned separate from, yet close to, this clade, away from the
typical African A1 clade. This clade was assigned to genogroup III. Three
samples were of the Asian A1 clade (genogroup I) with remaining specimens
grouping within genotype D and E. The variants showed low diversity within each
specimen with some differing at but a few positions across the genome while even
the most diverse quasispecies differed by less than a percentage (32 positions).
Several unique and atypical positional variations were observed amongst study
samples of which some were present in but one of the variants for that sample.
Twenty-six lead to shared amino acid changes. Some observed changes, such as A1762T/G1764A and G1896A, could explain the serological patterns such as
HBeAg negativity while others, such as C2002T, were previously implicated in
disease progression and severity. Sample N199 presented a longer branch length
and revealed short regions within the genome that display evidence of
recombination between HBV/A1 and HBV/A2. The results illustrate the utility of
NGS technology in characterizing viral variants. / Dissertation (MSc)--University of Pretoria, 2014. / lk2014 / Medical Virology / MSc / Unrestricted
|
7 |
Biodiversité du microbiome cutané des organismes marins : variabilité, déterminants et importance dans l’écosystème / Skin microbiome of marine vertebrates : variability, drivers and role in the ecosystemChiarello, Marlène 29 November 2017 (has links)
Les milliers d’espèces de microorganismes présentes dans les océans sont essentiellement connus pour être planctoniques ou benthiques. Moins décrits, de nombreux micro-organismes colonisent également la surface et le tube digestif des macro-organismes marins, formant des communautés appelées microbiomes. Ces microbiomes ont des conséquences cruciales sur la fitness de leur hôte. Les récents progrès en biologie moléculaire ont ouvert la voie à une caractérisation des différentes facettes de sa biodiversité, à la fois taxonomique, phylogénétique, et fonctionnelle. L’objectif de cette thèse est donc de caractériser la biodiversité des microbiomes cutanés des organismes marins, d’identifier ses échelles de variabilité, ses déterminants, et son importance à l’échelle de l’écosystème. Dans un premier temps j’ai mesuré l’efficacité d’indices de biodiversité à détecter des signaux écologiques dans le cas spécifique de communautés microbiennes. Puis, j’ai décrit le microbiome cutané des principaux grands clades d’animaux marins (poissons téléostéens, cétacés et invertébrés de plusieurs classes). J’ai démontré que le microbiome cutané était très différent des communautés présentes dans l’eau environnante. J’ai aussi montré qu’il était variable, à la fois entre individus et entre espèces, mais ne présentait pas de patron de phylosymbiose. Enfin, j’ai évalué la contribution de la diversité des microbiomes cutanés à la diversité de la communauté microbienne globale d’un écosystème corallien. J’ai ainsi démontré que les animaux marins hébergent collectivement une richesse microbienne presque vingt fois supérieure à celle de l’eau les environnant, et 75% de la richesse phylogénétique à l’échelle de l’écosystème. Dans un contexte d’érosion massive de la diversité des macro-organismes marins, ces résultats soulignent la nécessité d’évaluer plus exhaustivement la biodiversité microbienne marine et sa vulnérabilité face aux pressions anthropiques. / Oceans contain thousands of microbial species playing crucial roles for the functioning of the marine ecosystem. These microorganisms are present everywhere in the water column. Some microorganisms also colonize the surface and the digestive tract of marine macro-organisms, forming communities called microbiomes. These microbiomes have positive effects for their host’s fitness. The diversity of these marine animal surface microbiome is still largely understudied, despite recent progress in molecular biology that now permits to fully assess its different facets of biodiversity, i.e. taxonomic, phylogenetic and functional. The goal of this thesis is therefore to describe the diversity of the surface microbiome of marine animals, to assess its variability at different levels, as well as its determinants, and the significance of such diversity at the ecosystem’s scale. Firstly, I have assessed the efficiency of various diversity indices to detect ecological signals in the specific case of microbial communities. Secondly, I have described the surface microbiome of major marine animal clades (teleostean fishes, cetaceans and several classes of invertebrates). I found that these microbiomes are highly distinct from the surrounding planktonic communities. I demonstrated that these microbiomes are variable both between individuals from the same species and between species, but do not show a phylosymbiosis pattern. Last, I assessed the contribution of surface microbiomes to the global microbial community at the scale of a coral reef ecosystem. I demonstrated that marine animal surfaces host almost twenty times more microbial species than the water column, and 75% of the phylogenetic richness present in the ecosystem. In a context of massive erosion of marine macroscopic organisms, it is therefore urgent to exhaustively assess marine microbial biodiversity and its vulnerability facing anthropic pressures.
|
8 |
Identificação e mapeamento de famílias de DNA repetitivo em Characidium sp. aff. C. vidali (Teleostei, Characiformes) e sua atuação na evolução dos cromossomos BNobile, Maria Lígia Marques de Oliveira January 2019 (has links)
Orientador: Fausto Foresti / Resumo: Characidium é um grupo de peixes amplamente distribuídos pela região Neotropical, embora seja considerado o mais especioso dentro de Crenuchidae, do ponto de vista citogenético o número de espécies investigadas ainda é baixo, o que dificulta a caracterização quanto a organização cromossômica do gênero. Em relação ao número diploide, as espécies de Characidium conservaram um cariótipo com 2n = 50 cromossomos, do tipo metacêntricos e submetacêntricos (com exceções), o que resulta em uma macroestrutura homogênea para o grupo. Porém, investigações utilizando sequências repetitivas têm contribuído para ilustrar que a organização microestrutural cromossômica pode diferir entre as espécies, refletindo o hábito destes peixes constituírem populações pequenas e isoladas em cabeceiras de riachos. Adicionalmente, algumas espécies de Characidium também foram descritas portando cromossomos B em seus cariótipos, e a utilização de ferramentas citomoleculares têm contribuído para explorar quanto a origem e evolução destes componentes cariotípicos. Neste sentido, o objetivo do presente estudo foi agregar técnicas citomoleculares com resultados de sequenciamento massivo, para tentar compreender a ocorrência de cromossomos B no genoma de Characidium sp. aff. C. vidali. Os resultados obtidos mostraram que i) o mapeamento físico de diferentes sondas de DNA repetitivo contribuíram não apenas para caracterizar o cariótipo da espécie em estudo, como também adicionaram mais informações quanto a organi... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: Characidium is a group of fish widely distributed in the Neotropical region, although it is considered the most specious within Crenuchidae, from the cytogenetic point of view the number of species investigated is still low, which makes it difficult to characterize the chromosomal organization of the genus. In relation to the diploid number, Characidium species retained a karyotype with 2n = 50 chromosomes, metacentric and submetacentric (with exceptions), resulting in a homogeneous macrostructure for the group. However, investigations using repetitive sequences have contributed to illustrate that the chromosomal microstructural organization may differ between species, reflecting the habit of these fish constituting small and isolated populations in headwaters of streams. In addition, some species of Characidium have also been described carrying B chromosomes in their karyotypes, and the use of cyto-molecular tools has contributed to explore the origin and evolution of these karyotype components. In this sense, the objective of the present study was to aggregate cyto-molecular techniques with massive sequencing results to try to understand the occurrence of B chromosomes in the genome of Characidium sp. aff. C. vidali. The results showed that i) the physical mapping of different repetitive DNA probes contributed not only to characterize the karyotype of the species under study, but also added more information about the organization and evolution of the chromosomal microstruct... (Complete abstract click electronic access below) / Doutor
|
9 |
The oocyte-activation factor, phospholipase C zeta (PLCζ) : clinical prognosis, diagnosis, and treatment of oocyte activation deficiencyAmdani, Siti Nornadhirah January 2018 (has links)
Oocyte activation deficiency (OAD) is an infertile condition observed in patients who have experienced recurrent total fertilisation failure (TFF) following intracytoplasmic sperm injection treatment. This condition was considered to be an idiopathic factor for a long time but strong clinical evidence now suggests that dysfunctional forms of phospholipase C zeta (PLCζ) may be predominant causative factors for OAD. Genetic contribution has played a role in patients suspected of having OAD, as four PLCζ exonic mutations have been discovered and characterised as being the cause of infertility. In this study, a novel nonsense mutation, PLCζK322Stop, was identified in the PLCζ XY-linker region of Patient LR. This variant results in the truncation of approximately half of PLCζ, therefore was non-functional when activity was tested. Patient LR, which also exhibited a previously reported mutation, PLCζH233L, may suggest that the patient is sub-fertile, as opposed to being infertile, as initially expected. Although research has purely focused upon the coding regions of PLCζ, it was obvious that our knowledge of PLCζ regulatory elements remain very limited. Next generation sequencing (NGS) was therefore employed to detect variants in the non-coding regions of PLCζ, promoter and introns, which may have resulted in the observed phenotypic diversity of PLCζ expression in fertile and infertile patients. As a result of mapping failure, an alternative approach was considered to identify variants within human PLCζ, and this involved using the single nucleotide polymorphism (SNP) database. Over 2500 SNPs were localised in the intronic regions of PLCζ and thus, it could be speculated that these variants may help elucidate the wide variation of PLCζ expression reported. Additionally, two particular patients with TFF (79 and 107) were investigated in this study to identify an association with PLCζ and their infertile state. For Patient 79, multiple PLCζ immunofluorescence analysis was performed and a significant improvement in PLCζ expression was observed one year after his first investigation. This may have been the result of an external factor, which influenced protein expression. As for Patient 107, a novel substitution mutation, PLCζV193E, was identified and was predicted to affect PLCζ stability and folding. There is global interest to create a safer and alternative OAD therapy, namely a human recombinant PLCζ protein (hrPLCζ). The first method, using a bacterial cell line resulted in successful purification and identification but the product proved to be inactive following mouse oocyte microinjection. The second method involved production of a mammalian-expressed hrPLCζ, which was successfully purified and identified but due to time restrictions, could not be tested for functionality. Concurrently, the findings in this thesis have reinforced the association between PLCζ and OAD, and provided improved options for the diagnosis and treatment of OAD.
|
10 |
Microfluidic Technology for Low-Input Epigenomic AnalysisZhu, Yan 25 May 2018 (has links)
Epigenetic modifications, such as DNA methylation and histone modifications, play important roles in gene expression and regulation, and are highly involved in cellular processes such as stem cell pluripotency/differentiation and tumorigenesis. Chromatin immunoprecipitation (ChIP) is the technique of choice for examining in vivo DNA-protein interactions and has been a great tool for studying epigenetic mechanisms. However, conventional ChIP assays require millions of cells for tests and are not practical for examination of samples from lab animals and patients. Automated microfluidic chips offer the advantage to handle small sample sizes and facilitate rapid reaction. They also eliminate cumbersome manual handling.
In this report, I will talk about three different projects that utilized microfluidic immunoprecipitation followed by next genereation sequencing technologies to enable low input and high through epigenomics profiling. First, I examined RNA polymerase II transcriptional regulation with microfluidic chromatin immunoprecipitation followed by next generation sequencing (ChIP-seq) assays. Second, I probed the temporal dynamics in the DNA methylome during cancer development using a transgenic mouse model with microfluidic methylated DNA immunoprecipitation followed by next generation sequencing (MeDIP-seq) assays. Third, I explored negative enrichment of circulating tumor cells (CTCs) followed by microfluidic ChIP-seq technology for studying temporal dynamic histone modification (H3K4me3) of patient-derived tumor xenograft on an immunodeficient mouse model during the course of cancer metastasis.
In the first study, I adapted microfluidic ChIP-seq devices to achieve ultrahigh sensitivity to study Pol2 transcriptional regulation from scarce cell samples. I dramatically increased the assay sensitivity to an unprecedented level (~50 K cells for pol2 ChIP-seq). Importantly, this is three orders of magnitude more sensitive than the prevailing pol2 ChIP-seq assays. I showed that MNase digestion provided better ChIP-seq signal than sonication, and two-steps fixation with MNase digestion provided the best ChIP-seq quality followed by one-step fixation with MNase digestion, and lastly, no fixation with MNase digestion.
In the second study, I probed dynamic epigenomic changes during tumorigenesis using mice often require profiling epigenomes using a tiny quantity of tissue samples. Conventional epigenomic tests do not support such analysis due to the large amount of materials required by these assays. In this study, I developed an ultrasensitive microfluidics-based methylated DNA immunoprecipitation followed by next-generation sequencing (MeDIP-seq) technology for profiling methylomes using as little as 0.5 ng DNA (or ~100 cells) with 1.5 h on-chip process for immunoprecipitation. This technology enabled me to examine genome-wide DNA methylation in a C3(1)/SV40 T-antigen transgenic mouse model during different stages of mammary cancer development. Using this data, I identified differentially methylated regions and their associated genes in different periods of cancer development. Interestingly, the results showed that methylomic features are dynamic and change with tumor developmental stage.
In the last study, I developed a negative enrichment of CTCs followed by ultrasensitive microfluidic ChIP-seq technology for profiling histone modification (H3K4Me3) of CTCs to resolve the technical challenges associated with CTC isolation and difficulties related with tools for profiling whole genome histone modification on tiny cell samples. / Ph. D. / The human genome has been sequenced and completed over a decade ago. The information provided by the genomic map inspired numerous studies on genetic variations and their roles in diseases. However, genomic information alone is not always sufficient to explain important biological processes. Gene activation and expression are not only associated with alteration in the DNA sequence, but also affected by other changes to DNA and histones. Epigenetics refers to the molecular mechanisms that affect gene expression and phenotypes without involving changes in the DNA sequence.
For example, the DNA can get methylated, the histone protein that is wrapped around by DNA can also get methylated or acetylatied, and transcription factors can bind to different part of DNA. All of these can affect gene expression without alter the DNA sequences. Epigenetic changes occur throughout all stages of cell development or in response to environmental cues. They change transcription patterns in a tissue/cell-specific fashion. For example, transcriptional silencing of tumor-suppressor genes by DNA methylation plays an important role in cancer development. Therefore, understanding of epigenetic regulations will help to improve various aspects of biomedicine. For instance, personalized medicine can be vi tailored based on epigenetic profile of certain patient to specifically control gene expression in the disease treatment. However, the technology for profiling epigenetic modifications, i.e. Chromatin Immunoprecipitation (ChIP), suffers from serious limitations. The key limitation is the sensitivity of the assay. Conventional assay requires a large number of cells (>10⁶ cells per ChIP). This is feasible when using cell lines. However, such requirement has become a major challenge when primary cells are used because very limited amounts of samples can be generated from lab animals or patients. Population heterogeneity information may also be lost when a large cell number is used.
In this project, we developed an automated ultrasensitive microfluidic chromatin/DNA immunoprecipitation followed by next-generation sequencing (ChIP/MeDIP-Seq) technology for profiling epigenetic modifications (e.g., histone modifications, transcriptional regulations, and DNA methylation). We extensively optimized design parameters for each and every step of ChIP/MeDIP (e.g. sonication/crosslinking time, antibody concentration, washing conditions) in order to reach highest sensitivity of 0.1 ng DNA (or ~50-100 cells) as starting material for IP, which is roughly 4-5 orders of magnitude higher than the prevailing protocol and 2-3 orders of magnitude higher than the-state-of-the-art(~50 ng). With such sensitivity, we were able to study temporal dynamics in the DNA methylomes during the various stages of mammary cancer development from a transgenic mouse mode. We were able to investigate transcriptional regulation of RNA polymerase II from scarce cell samples. We were also able to study histone modification (H3K4Me3) of circulating tumor cells during cancer metastasis.
|
Page generated in 0.1308 seconds