• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 1
  • Tagged with
  • 24
  • 24
  • 24
  • 14
  • 8
  • 7
  • 5
  • 5
  • 5
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Coiled-coil domain-containing protein 69 (CCDC69) acts as a scaffold and a microtubule-destabilizing factor to regulate central spindle assembly

Pal, Debjani January 1900 (has links)
Master of Science / Department of Biochemistry / Qize Wei / Proper regulation of mitosis and cytokinesis is fundamentally important for all living organisms. During anaphase, antiparallel microtubules are bundled between the separating chromosomes, forming the central spindle (also called the spindle midzone), and the myosin contractile ring is assembled at the equatorial cortex. Regulators of central spindle formation and myosin contractile ring assembly are mostly restricted to the interdigitated microtubules of central spindles and they can be collectively called midzone components. It is thought that characteristic microtubule configurations during mitosis and cytokinesis are dictated by the coordinated action of microtubule-stabilizing and -destabilizing factors. Although extensive investigations have focused on understanding the roles of microtubule-bundling/stabilizing factors in controlling central spindle formation, efforts have been lacking in aiming to understand how microtubule-destabilizing factors regulate the assembly of central spindles. This dissertation describes the role of a novel microtubule-destabilizing factor termed CCDC69 (coiled-coil domain-containing protein 69) in controlling the assembly of central spindles and the recruitment of midzone components. Endogenous CCDC69 was localized to the nucleus during interphase and to the central spindle during anaphase. Exogenous expression of CCDC69 in HeLa cells destabilized microtubules and disrupted the formation of bipolar mitotic spindles. RNA interference (RNAi)-mediated knockdown of CCDC69 led to the formation of aberrant central spindles and interfered with the localization of midzone components such as aurora B kinase, protein regulator of cytokinesis 1 (PRC1), MgcRacGAP/HsCYK-4, and pololike kinase 1 (Plk1) at the central spindle. CCDC69 knockdown also decreased equatorial RhoA staining, indicating that CCDC69 deficiency can impair equatorial RhoA activation and ultimately lead to cytokinesis defects. Four coiled-coil domains were found in CCDC69 and the C terminal coiled-coil domain was required for interaction with aurora B. Disruption of aurora B function in HeLa cells by treatment with a small chemical inhibitor led to the mislocalization of CCDC69 at the central spindle. Further, vitro kinase assay showed that Plk1 could phosphorylate CCDC69. Taken together, we propose that CCDC69 acts as a scaffold and a microtubule-destabilizing factor to control the recruitment of midzone components and the assembly of central spindles.
22

Characterization of chitin synthase and chitinase gene families from the African malaria mosquito

Zhang, Xin January 1900 (has links)
Doctor of Philosophy / Department of Entomology / Kun Yan Zhu / Chitin metabolism represents an attractive target site for combating insect pests as insect growth and development are strictly dependent on precisely toned chitin synthesis and degradation and this process is absent in humans and other vertebrates. However, current understanding on this process and the involved enzymes is rather limited in insects. In this study, two chitin synthase genes (AgCHS1 and AgCHS2 or AgCHSA and AgCHSB), and 20 chitinase and chitinase-like genes (groups I-VIII) presumably encoding the enzymes for chitin biosynthesis and degradation, respectively, were identified and characterized in African malaria mosquito, Anopheles gambiae. Immunohistochemistry analysis and developmental stage- and tissue-dependent transcript profiling by using reverse transcription PCR, real-time quantitative PCR, and in situ hybridization revealed new information on these genes. Current understanding on chitin synthases is extended by the expression profiles such as the localization of AgCHS1 and AgCHS2 transcripts in eggs, AgCHS2 transcripts in the posterior larval midgut, AgCHS1 and AgCHS2 proteins in the compound eyes, and AgCHS2 enzyme in pupal inter-segments. Chitinase and chitinase-like genes are highly diverse in their gene structure, domain organization, and stage- and tissue-specific expression patterns. Most of these genes were expressed in several stages. However, some genes are stage- and tissue-specific such as AgCht8 mainly in pupal and adult stages, AgCht2 and AgCht12 specifically in foregut, AgCht13 exclusively in midgut. Functional analysis of each chitin synthase gene was conducted by using the chitosan/dsRNA nanoparticle-based RNA interference (RNAi) through larval feeding. The repression of the AgCHS1 transcripts which are predominantly expressed in carcass initiated from the mosquito larval feeding of dsRNA suggests the systemic nature of RNAi in mosquito larvae. In addition, silencing of AgCHS1 increased larval susceptibilities to diflubenzuron, whereas silencing of AgCHS2 enhanced the peritrophic matrix disruption and thus increased larval susceptibilities to calcofluor white or dithiothreitol. Furthermore, a non-radioactive method was adapted and optimized to examine the chitin synthase activity in mosquitoes. By using this method, diflubenzuron and nikkomycin Z show limited in vitro inhibition on chitin synthase at high concentration in cell free system, whereas no in vivo inhibition was observed.
23

Select cardiac copper chaperone proteins are up-regulated by dietary copper deficiency

Getz, Jean January 1900 (has links)
Master of Science / Department of Human Nutrition / Denis M. Medeiros / Copper deficiency has been linked with many health problems, among them cardiac hypertrophy. Because of its potential for causing oxidative damage, copper within the cell must be bound to chaperone proteins. In this thesis, we examined the role of dietary copper deficiency in the regulation of select copper chaperone proteins in cardiac tissue of rats. Sixteen weanling male Long-Evans rats were randomized into treatment groups, one group receiving a copper deficient diet (< 1 mg Cu/kg diet) and one group receiving a diet containing adequate copper (6 mg Cu/kg diet) for 5 weeks. Rats were sacrificed and a small blood sample was removed to determine hematocrit. Also, heart and liver tissues were removed for subsequent analysis. Rats fed the copper deficient diet had lower body weights but greater heart weights and heart:body weight. Hematocrit levels and liver copper concentrations were markedly decreased in copper deficient rats. These variables indicated that the copper deficient diet did in fact induce a copper deficiency in these animals. Non-myofibrillar proteins from the hearts were removed and separated by SDS-PAGE. Western Blotting was used to determine the concentrations of CTR1, CCS, Cox17, SCO1, Cox1 and Cox4. No changes were observed in the concentrations of CTR1 and Cox17. CCS and SCO1 were up-regulated as a result of copper deficiency, while Cox1 and Cox4 were both down-regulated. However, use of another antibody against Cox subunits suggested that only the nuclear encoded subunits including subunit IV were decreased, but not subunits I and II. These data provide new insight into the cardiac hypertrophy observed in copper deficiency, which suggests that select chaperone proteins may be up-regulated by a dietary copper deficiency.
24

Synthesis, biophysical analysis and biological evaluation of tricyclic pyrones and pyridinones as anti-alzheimer agents

Rana, Sandeep January 1900 (has links)
Doctor of Philosophy / Department of Chemistry / Duy H. Hua / The objectives of this research project were to (i) synthesize different bicyclic and tricyclic pyrone and pyridinone compounds; (ii) study the mechanism of action of these compounds in solution as anti-Aβ (amyloid β) agents using different biophysical techniques; and (iii) study the biological activity of pyrone compounds for the counteraction of Aβ toxicity using MC65 cells, a human neuroblastoma cell line and 5X- familial Alzheimer’s disease (5X FAD, a transgenic mice with five different mutations) mice. A series of tricyclic pyrone and pyridinone compounds were investigated. The tricyclic pyrones and pyridinones were synthesized utilizing a condensation reaction between cyclohexenecarboxaldehye (25) and 4-hydroxy-6-methyl-2-pyone (24) or 4-hydroxy-6-methyl-2-pyridinone (51), respectively. A tricylic pyrone molecule CP2 (2, code name) was synthesized and has an adenine base unit attached to the pyrone core. For structure activity relationship (SAR) studies, the adenine group of CP2 was replaced with other DNA base units (thymine, cytosine and guanine) and various heterocyclic moieties. Since nitrogen containing compounds often exhibit increased bioactivity and brain-penetrating abilities, oxygen atom (O5’) was displaced with a nitrogen atom in the middle ring of the tricyclic pyrone. A condensation reaction of pyrone 51 and 25 was carried out to give the linear pyranoquinoline (52) and the L-shaped pyranoisoquinoline (53). The neurotoxicity of amyloid-β protein (Aβ) is widely regarded as one of the fundamental causes of neurodegeneration in Alzheimer’s disease (AD). Recent studies suggest that soluble Aβ oligomers rather then protofibrils and fibrils may be the primary toxic species. Different biophysical techniques including atomic force microscopy (AFM), circular dichroism (CD), surface plasmon resonance (SPR) spectroscopy, and protein quantification assays were used to study the mechanism of aggregation of Alzheimer Aβ peptide in solution. In search of potentially bioactive compounds for AD therapies, MC65 cell line was used as a screening model. Different tricyclic pyrone and pyridinone compounds protect MC65 cells from death. We studied the efficacy of CP2 in vivo by treatment of 5X FAD mice, a robust Aβ42-producing animal model of AD, with a 2-week course of CP2, which resulted in 40% and 50% decreases in non-fibrillar and fibrillar Aβ species respectively.

Page generated in 0.073 seconds