• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 3
  • Tagged with
  • 10
  • 10
  • 8
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Paleosols as an indicator of ancient landscapes, climates and stratal response during the Triassic the Salt Anticline Region of Utah /

Prochnow, Shane J. Nordt, Lee C. January 2005 (has links)
Thesis (Ph.D.)--Baylor University, 2005. / Includes bibliographical references (p. 108-119).
2

Geology of the Chinle Formation in the Upper Little Colorado drainage area, Arizona and New Mexico

Cooley, M. E. (Maurice E.) January 1957 (has links)
No description available.
3

Fluvial sequence stratigraphy and paleoclimate of the Upper Triassic (Norian-Rhaetian) Chinle Strata, northern New Mexico

Cleveland, David M. Atchley, Stacy C. Nordt, Lee C. January 2007 (has links)
Thesis (Ph.D.)--Baylor University, 2007. / In the abstract "[delta]13C" the "13" and "[delta]18O" the "18" are superscript; "pCO2" the "2" is subscript. Includes bibliographical references (p. 107-118).
4

The Bell Springs Formation: Characterization and Correlationof Upper Triassic Strata in Northeast Utah

May, Skyler Bart 01 June 2014 (has links) (PDF)
Upper Triassic strata that lie between the Chinle Formation and Nugget Sandstone along the south flank of the Uinta Mountains in northeastern Utah are distinctive. In the past, these rocks have been lumped together with the overlying or underlying units. These strata are equivalent to the Bell Springs Member of the Nugget Sandstone as defined in Wyoming and perhaps to the Rock Point Formation of the Chinle Formation near the Four Corners region. In this study, these rocks will be called the Bell Springs Formation following the usage of Lucas (1993) in Wyoming. The unit is regionally mappable in northeastern Utah, and is the sedimentologic transition from the fluvial-lacustrine environment of the Chinle Formation to the eolian depositional environment of the Nugget Sandstone. The Bell Springs Formation is comprised of interbedded fine- to medium-grained sandstone and siltstone, as well as planar laminated mudstone. The unit varies from planar laminated sandstone with abundant ripple marks, to cross-bedded sandstone that contains scoured channels filled with mudstone or sandstone. The mudstone beds are commonly mottled and contain desiccation cracks while both the mudstone and sandstone beds have rip-up clasts, occasional bioturbation, and small salt crystal casts. The thinly bedded mudstone and siltstone beds are purple to red to brown, and the sandstone beds vary in color from red to brown to orange or tan with green and gray mottling. The ripple structures with mud drapes indicate fluctuating deposition in low energy water. The presence of desiccation cracks, plant root traces, small eolian sand dunes, gypsum casts, crinkly algal mat beds, and bioturbation indicate intermittent subaerial exposure. Fluvial deposits by meandering streams, including point bar, levee, and splay deposits comprise a large part of this formation. Rocks of the Bell Springs Formation have previously been interpreted as either tidal flat or fluvial/lacustrine deposits. A tidal flat environment certainly may produce some of the features found in these deposits, such as, alternating erosion and deposition of interfingering channels and scours with rip-up clasts, ripples, flaser bedding, desiccation cracks, and bioturbation; however, these rocks lack some of the most important characteristics of tidal flat deposits such as herringbone-cross-stratification, general fining upward successions, and regionally associated sediments that would typically be found in shallow marine environments. We conclude that the sedimentary characteristics and regional setting of these rocks fit best with a fluvial environment interpreted as a meandering system being deposited on a broad floodplain in an arid to semi-arid climate. This depositional environment existed between the expanding Nugget Sandstone erg and the shrinking Chinle Formation as desertification increased during the Late Triassic and Early Jurassic in what is now the western United States. This study not only helps solidify the understanding of the depositional history of these strata, it also clarifies the nomenclature of these formations for future mapping and research.
5

Rise of present-day tetrapods in the paleotropics of Late Triassic equatorial Pangaea: new insights from microvertebrate data

Kligman, Ben Thomas 09 May 2023 (has links)
The Triassic Period (~252–201.5 Ma) saw a transformative radiation and reorganization of continental tetrapod diversity following the end-Permian Extinction, including an assemblage of diverse forms that do not survive the end-Triassic (herein termed the 'endemic Triassic fauna', =ETF), as well as the earliest fossil representatives of all major modern tetrapod groups (herein termed the 'Living [Triassic to Recent] Fauna', =LTF; i.e. Salientia, Caudata, Gymnophiona, Mammaliaformes, Squamata, Rhynchocephalia, Testudinata, Crocodylomorpha, and Dinosauria). With few exceptions, only the LTF assemblage survives the end-Triassic Extinction (~201.5 Ma), highlighting the Late Triassic (~227–201.5 Ma) record as essential for understanding this pivotal transition and the evolutionary and ecological origins of post-Triassic non-marine tetrapod faunas, including those of present day. Micro-microvertebrate bonebeds are arguably the best proxy for tracking continental vertebrate biodiversity, however gaps in their Late Triassic record obscure patterns and drivers of evolutionary, ecological, and environmental change during the rise of LTF communities. In my dissertation, I use new data collected from Upper Triassic microvertebrate bonebeds from North America, and particularly the Thunderstorm Ridge site (PFV 456) in Petrified Forest National Park, Arizona, U.S.A, to fill gaps in the evolutionary record of specific groups (e.g., lissamphibians and lepidosaurs), as well as the vertebrate paleocommunity record of Triassic equatorial Pangaea. My first chapter describes and analyzes an assemblage of gymnophionomorph (stem caecilian) bones from PFV 456 which represent the oldest-known caecilian fossils globally. As the oldest caecilian fossils, they provide new support for the dissorophoid temnospondyl affinities of caecilians and other living amphibians, evidence of a step-wise acquisition of caecilian anatomies associated with fossoriality, and evidence of an ancient pattern of equatorial biogeographic restriction in caecilians from the Triassic to the present day. My second chapter describes and analyzes an assemblage of lepidosauromorphs from the Late Triassic of Equatorial Pangaea, providing new insights into the step-wise evolution tooth and jaw morphologies near the divergence of living lepidosaur clades (Squamata and Rhynchocephalia), and showing evidence for the Triassic acquisition in stem squamates and non-squamate lepidosaurs of dental features conserved in living squamates. The third chapter uses apomorphy-based identifications to describe the vertebrate diversity of the Thunderstorm Ridge site (PFV 456), providing evidence for the most species rich continental vertebrate community yet-known from the Triassic, with 55 vertebrate taxa. Nearly all LTF clades are present, predating similar assemblages from the early Jurassic by over 20 million years, and indicating that the assembly of the first LTF communities by at least 220 million years ago, long before the Triassic-Jurassic Extinction event (~201.5). The presence of this exceptional diversity may be linked to the climatic and environmental settings of equatorial Pangaea during the Triassic. / Doctor of Philosophy / The Triassic Period, lasting about 50 million years from approximately 252 to 201.5 million years ago, was a period of transformation for life living on land. During the Triassic, we see the first fossil evidence for the evolution of the tetrapod (animals with a backbone and limbs) groups familiar to us from the present-day Earth, including frogs, salamanders, caecilians, mammals, lizards, the tuatara, turtles, crocodilians, and dinosaurs. Understanding the early evolution of these groups is limited by gaps in the Triassic fossil record, particularly for groups with small-bodies and delicate skeletons like frogs, salamanders, caecilians, and lizards. The poor Triassic records of these groups also limits understandings of when and where tetrapod communities resembling those of the present-day first assembled, and whether events like the Triassic-Jurassic Extinction event (~201.5 million years ago) shaped the organization of these communities. To fill these gaps, I have focused on collecting data from microvertebrate bonebeds, layers of rock that preserve the small, delicate bones of small-bodied vertebrates that are typically rare elsewhere. New microvertebrate data collected from Late Triassic rocks in North America, and particularly the 220 million year old Thunderstorm Ridge site (PFV 456) in Petrified Forest National Park, Arizona, U.S.A., provide evidence for exceptionally diverse tetrapod communities, opening a window onto the early evolution of living tetrapods and their ecological interactions. In my first chapter I describe and analyze the bones of a stem caecilian amphibian from the Thunderstorm Ridge site. These are the oldest caecilian fossils on Earth, and they provide new evidence for the evolutionary relationships, ecologies, and biogeography of these enigmatic living amphibians. In my second chapter I describe and analyze the jaws and teeth of early lizards and their close relatives from North American Late Triassic microvertebrate sites, showing that the tooth and jaw morphologies of living lizards like geckos and skinks first evolved in their Triassic relatives. In my third chapter, I describe and identify the 55 vertebrate taxa recovered from the Thunderstorm Ridge site, showing that it is the most diverse tetrapod community known from the Triassic. The diversity of early members of living tetrapod groups at Thunderstorm Ridge suggests that tetrapod communities resembling those of the present-day first assembled in the Triassic, at least 20 million years prior to the Triassic-Jurassic Extinction.
6

Paleoecology of the Chinle formation in the Petrified Forest National Park, Arizona

Gottesfeld, Allen January 1971 (has links)
No description available.
7

An analysis and comparison of pebbles from the Chinle and Morrison Formations, Arizona and New Mexico

Dodge, Constance Nuss, 1948- January 1973 (has links)
No description available.
8

The Chinle Formation of the Paria Plateau Area, Arizona and Utah

Akers, J.P. January 1960 (has links)
In the Paria Plateau area of northern Arizona and southern Utah the Chinle formation of Upper Triassic age consists of a thick series of Ienticular sandstone, siltstone, claystone, and limestone. The series thins northwestward from about 900 feet at Lees Ferry, Ariz., to about 800 feet at Paria, Utah. Four members of the Chinle formation are recognized—1) the basal Shinarump member composed of conglomeratic sandstone and subordinate shale, 2) a unit, herein named the Lowery Spring member, composed of sandstone and mudstone, 3) the Petrified Forest member composed of bentonitic siltstone and claystone and thin sandstone, and 4) the Owl Rock member composed of cherty limestone and calcareous siltstone. Only the Petrified Forest member is present at all localities in the Paria Plateau area. The Shinarump member was deposited in topographic low areas on an erosion surface and its distribution is irregular. The Lowery Spring and Owl Rock members grade and pinch-out toward the northwest and are not present at Paria, Utah. The upper contact of the Chinle formation is locally unconformable. The three lowermost members were deposited on a broad, flat plain between the Cordilleran geosyncline and highlands to the southeast. In Owl Rock time the rising Cordilleran geanticline cut off the north-westward drainage of Chinle streams and a depositional basin trending southwest was formed.
9

The Chinle formation of the Paria Plateau Area, Arizona and Utah

Akers, Jay P., 1921- January 1960 (has links)
No description available.
10

Stratigraphy and economic geology of the Chinle formation, northeastern Arizona

Wilson, Robert Lee, 1917-, Wilson, Robert Lee, 1917- January 1956 (has links)
No description available.

Page generated in 0.1035 seconds