Spelling suggestions: "subject:"chinook salmonella -- bvehavior"" "subject:"chinook salmonella -- cobehavior""
1 |
Effects of steelhead trout (Oncorhynchus mykiss) on chinook salmon (O. tshawytscha) behavior and physiologyKelsey, Denise A. 29 April 1997 (has links)
Three experiments were designed to determine if and how steelhead trout,
Oncorhynchus mykiss, may affect chinook salmon, O. tshawytscha, when they are
confined together as in a raceway or on a barge. We observed groups of chinook and
steelhead together and groups of only chinook in a behavioral experiment to determine
if steelhead are aggressive and if their presence changed the behavior of chinook. Two
physiological experiments were completed to determine if the loading of steelhead on
top of chinook and if the introduction of odor from rainbow trout (steelhead not
available) caused a change in plasma cortisol levels in chinook. It was found that
chinook showed characteristics of a schooling species, while steelhead exhibited
territory holding characteristics. Behavioral changes in chinook were observed when
steelhead were present. Chinook grouped with steelhead reduced their movements,
darted less, were attacked up to 16 times more often, and were found less frequently in
the shade than groups of only chinook. Steelhead were found to establish territories and
defend them with chases, charges, and nips. In attempts to establish territories and
defend them, steelhead attacked chinook as often as they attacked other steelhead even
though chinook showed little aggression toward steelhead. In a physiological
experiment, chinook experienced the loading of salmonids into their tank. Chinook had
higher levels of plasma cortisol at 2 and 32 hours after the loading of steelhead than
chinook that were loaded with chinook or controls (no loading). A second
physiological experiment with odor showed that chinook that received rainbow odor
and those that received chinook odor had similar levels of plasma cortisol. Cortisol
levels (two hours after the odor was introduced) were higher in chinook receiving either
of the scented waters than in those that did not receive any odor. In conclusion, all
three experiments indicated that the presence of juvenile steelhead trout affect juvenile
chinook salmon behavior and physiology. / Graduation date: 1998
|
2 |
Interactions between threespine stickleback (Gasterosteus aculeatus linnæus) and juvenile chinook salmon (Oncorhynchus tshawytscha Walbaum) in an estuarine marshSambrook, Robert Joseph January 1990 (has links)
Threespine stickleback (Gasterosteus aculeatus) and juvenile chinook salmon (Oncorhynchus tshazvytscha) co-occur during high tide in tidal channels of the Fraser River estuary. Given the high density of resident stickleback, there is the potential for strong interactions within and between the two species. Inter- and intra-specific interactions were tested by means of laboratory experiments, with support from field studies.
Laboratory experiments placed stickleback and chinook in mixed and single species groups. The levels of aggressiveness were quantified, along with prey choice between surface (Drosophila), midwater (Artemia), and benthic (Tubifex) prey; microdistribution was also recorded. The experiments demonstrated that stickleback were highly aggressive towards chinook, and would drive them away from optimal feeding territories. Chinook consumed surface prey only when tested with stickleback, exploiting benthic and midwater prey when feeding alone. Stickleback demonstrated no significant difference in diet between single and mixed species trials, which is consistent with the supposition of strongly asymmetrical competition for food and space. Field data lend further support to this premise; a marked difference observed in diet suggests microhabitat partitioning between the two species, with stickleback feeding on benthos and chinook largely consuming surface prey.
This thesis proposes that interactive segregation is an important process between sympatric stickleback and juvenile chinook in estuarine tidal channels and might have important implications for Fraser chinook stocks. / Science, Faculty of / Zoology, Department of / Graduate
|
Page generated in 0.0582 seconds