• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 9
  • 9
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Locomotor responses of juvenile and adult sockeye salmon (Oncorhynchus nerka) to acute changes in temperature and salinity

Tolson, Graeme M. January 1988 (has links)
The locomotor responses of juvenile and adult sockeye salmon (Oncorhynchus nerka) to concurrent changes in temperature and salinity were examined in a controlled laboratory setting. I hoped to better understand how these environmental factors influence the coastal movements of migrating salmon. Juvenile sockeye were captured during the downstream migration from Great Central Lake on Vancouver Island, British Columbia, Canada. The fish were acclimated for 1 wk at 10°C, 20 ppt, and then tested in annular activity tanks. Spontaneous locomotor movements were recorded during concomitant changes in temperature and salinity using infra-red photometry. Raising the water temperature by 4°C in 1 h caused a dramatic increase in locomotor activity. Decreasing temperature by 4°C or varying salinity by 10 ppt from the control levels did not influence routine swimming speed and there was no interaction between factors. Adult sockeye homing to the Fraser River, British Columbia, Canada were captured along the nearshore migration route in two oceanographically distinct regions. Three groups of fish were collected from the cold, saline waters of Queen Charlotte Strait, near the northern end of Vancouver Island. Two groups of sockeye were captured within 60 km of the Fraser River in the warmer, less saline waters of the Strait of Georgia. The adults were acclimated 2-5 days at 12°C, 30 ppt and locomotor activity was tested in annular activity tanks. Routine swimming speed and turning rate rose when the water temperature was raised by 4°C in 2 h, however, locomotor activity was not influenced by decreasing temperature. In addition, decreasing salinity by 10 ppt in 2 h had no effect on swimming activity of adult sockeye and there was no interaction between the two factors. Fish taken from the Strait of Georgia generally showed a less dramatic response to increasing temperature than adults captured in Queen Charlotte Strait. Results indicate that warm coastal temperatures may influence the nearshore migration of both juvenile and adult sockeye salmon. / Science, Faculty of / Zoology, Department of / Graduate
2

Chemodetection of threatening chemical stimuli by juvenile coho salmon (Oncorhynchus kisutch)

Stone, Steven L. 26 August 1992 (has links)
Graduation date: 1993
3

Spatial habitat use of young-of-the-year Atlantic salmon (Salmo salar) in response to changing stream discharge and population density : testing the instream flow model concept in a controlled experiment

Holm, Christian Franz January 2001 (has links)
Many rivers are affected by man-induced regulations of stream-flow. The effects of these on the instream biota have been studied widely and it is generally accepted that assessment tools for the management of regulated rivers are of vital importance. In particular predictive instream habitat models like the Physical Habitat Simulation Model (PHABSIM) have become popular for this purpose with users world-wide. These models predict discharge-related changes in instream habitat availability for target species by modelling the hydraulic geometry of the river reach on the one and the microhabitat preferences of the species on the other side. Despite their popularity, validation studies for this approach have met many difficulties which are mostly related to the biological part of the model, the habitat preference curves. A review of these studies undertaken here reveals that very little information has been published on two main assumptions of the models: 1. The habitat preference of a species is independent of stream discharge 2. The habitat preference of a species is independent of the species population density Most validation studies are undertaken in field situations. As such they frequently have had problems relating to sampling the microhabitat use consistently, a lack of experimental control and variations in other secondary variables. It was thus decided to conduct controlled experiments in a large indoor flume. Young-of-year Atlantic salmon (Salmo salar) caught in a nearby stream were stocked into pool-riffle sequences, landscaped within a natural substrate, in observation areas of 3.6 metres length and 1 metre width. Microhabitat use of fish was recorded at three different discharges within a 15-fold discharge variation. It was found that the mean column velocity preference of the juvenile salmon, calculated by the standard method, varied largely, mainly due to a shift of preference for low water velocities. "Weighted usable area" (WUA) calculations, the final output of instream habitat models, varied up to two-fold due to these differences in preference. Habitat preference also varied with population density. Fish preferred the riffle habitat at low population density and the pool habitat during high population density. Fish used higher mean column velocities during low population density. There are hence fundamental problems related to the approach of using density functions as preference indices as is commonly done for building habitat preference curves, because of a bias for habitat availability. A new approach using Geographic Information Systems (GIS) is taken by comparing the microhabitat conditions fish experience at their chosen positions with the conditions fish would have experienced had they maintained the positions used at the other discharges. It was found that fish adjusted their positions towards significantly different microhabitats between low flow positions and the positions at the other two flows. This research demonstrates how microhabitat use and preference of wild-caught juvenile salmon varied with discharge and population density in a large near-natural flume. The error introduced by these variations to instream habitat model predictions was large. It confirms that habitat preference curves built as density functions on empirical fish observation data are bound to misrepresent the overall habitat requirements of a species life stage which in the case of juvenile salmon appeared wide and flexible over the range of discharge.
4

An experimental examination of behavioural isolation between sockeye salmon and kokanee, the anadromous and non-anadromous forms of Oncorhynchus nerka

Foote, Christopher J. January 1987 (has links)
The genetic relationship of anadromous (sockeye salmon) and non-anadromous (kokanee) Oncorhynchus nerka was examined in conjunction with the breeding behaviour of the two forms to determine: (1) if there is evidence of genetic divergence between the forms where they spawn sympatrically; (2) if such divergence is associated with significant premating isolation between the forms and; (3) if premating isolation results directly from the size difference between the forms (sockeye are much larger than kokanee at maturity). Both sexes exhibit spawning territoriality; females establish and defend particular nest sites until death or displacement, males defend access to specific females from other males until the female has spawned out, they are displaced, or leave to compete for additional mates. Size and prior access to resources (mates and/or specific areas) are significant factors in intrasexual aggression in both sexes, with size the major factor in males and prior access the major factor in females. Females accompanied by males larger than themselves lose weight at a faster rate than those accompanied by males smaller than themselves. Weight loss is related to egg loss, indicating females spawn at a faster rate when accompanied by large males. Male mate preference depends on the size of the male. Males of various sizes prefer females of their own size or larger over females smaller than themselves. In contrast, all sizes of males tested demonstrated no preference between females of their own size and those larger. Large males, which have the widest range of potential mates (because of male intrasexual competition and female choice), are the most selective and small males, which have the narrowest range of potential mates, are the least selective. There were significant differences in allele frequencies between sympatrically spawning sockeye and kokanee. However, there were no consistent differences between sockeye and kokanee at any of five polymorphic loci examined. The extent of genetic differentiation between sympatric forms appears to be less than that between neighbouring populations of the same form, judging from an examination of allele frequencies and/or allele compositions. There was extensive assortative mating by form between sockeye and kokanee, which was not totally accounted for by the large size difference. In the two systems examined, males preferred to mate with females of their own form. In sockeye, such preferences are expected because of the size difference between forms. In kokanee, such preferences are not expected based on size alone, suggesting the evolution of premating isolating mechanisms. The degree of premating isolation was positively correlated with the extent of genetic divergence between sympatric forms. The results of this study are related to existing models of sympatric speciation to hypothesize that sockeye and kokanee have diverged in sympatry. The probable differences in selection between the marine and freshwater environments coupled with the assortative mating resulting from their size difference may have caused subsequent genetic divergence. This divergence appears to have been followed by the evolution of premating isolation. / Science, Faculty of / Zoology, Department of / Graduate
5

Effects of steelhead trout (Oncorhynchus mykiss) on chinook salmon (O. tshawytscha) behavior and physiology

Kelsey, Denise A. 29 April 1997 (has links)
Three experiments were designed to determine if and how steelhead trout, Oncorhynchus mykiss, may affect chinook salmon, O. tshawytscha, when they are confined together as in a raceway or on a barge. We observed groups of chinook and steelhead together and groups of only chinook in a behavioral experiment to determine if steelhead are aggressive and if their presence changed the behavior of chinook. Two physiological experiments were completed to determine if the loading of steelhead on top of chinook and if the introduction of odor from rainbow trout (steelhead not available) caused a change in plasma cortisol levels in chinook. It was found that chinook showed characteristics of a schooling species, while steelhead exhibited territory holding characteristics. Behavioral changes in chinook were observed when steelhead were present. Chinook grouped with steelhead reduced their movements, darted less, were attacked up to 16 times more often, and were found less frequently in the shade than groups of only chinook. Steelhead were found to establish territories and defend them with chases, charges, and nips. In attempts to establish territories and defend them, steelhead attacked chinook as often as they attacked other steelhead even though chinook showed little aggression toward steelhead. In a physiological experiment, chinook experienced the loading of salmonids into their tank. Chinook had higher levels of plasma cortisol at 2 and 32 hours after the loading of steelhead than chinook that were loaded with chinook or controls (no loading). A second physiological experiment with odor showed that chinook that received rainbow odor and those that received chinook odor had similar levels of plasma cortisol. Cortisol levels (two hours after the odor was introduced) were higher in chinook receiving either of the scented waters than in those that did not receive any odor. In conclusion, all three experiments indicated that the presence of juvenile steelhead trout affect juvenile chinook salmon behavior and physiology. / Graduation date: 1998
6

The physiology of the reproductive cycle of the powan of Loch Lomond, Coregonus lavaretus (L) (Euteleostei, Salmonidae) in relation to the deposition and mobilization of storage products

Rashid, Karim Hamid January 1985 (has links)
There have been numerous studies in which the reproductive cycles of teleosts have been correlated with either environmental cycles or associated physiological cycles, or both. Such correlation is seldom accurately achieved; usually because the reproductive cycle of the species concerned is lax, sometimes because only one or two factors of an integrated whole were examined. The powan of Loch Lomond, Coregonus lavaretus (L. ) (Teleostei, Salmoniformes) is the subject of a long-term study investigating its growth, in particular reproduction. This race is a freshwater glacial relict form of a boreal group, and thus has an exceptionally strictly times reproductive cycle. It thus represents an ideal subject for cyclical studies. This thesis investigates the relationship between lipid storage and the reproductive cycle and the role of thyroid gland.
7

Interactions between threespine stickleback (Gasterosteus aculeatus linnæus) and juvenile chinook salmon (Oncorhynchus tshawytscha Walbaum) in an estuarine marsh

Sambrook, Robert Joseph January 1990 (has links)
Threespine stickleback (Gasterosteus aculeatus) and juvenile chinook salmon (Oncorhynchus tshazvytscha) co-occur during high tide in tidal channels of the Fraser River estuary. Given the high density of resident stickleback, there is the potential for strong interactions within and between the two species. Inter- and intra-specific interactions were tested by means of laboratory experiments, with support from field studies. Laboratory experiments placed stickleback and chinook in mixed and single species groups. The levels of aggressiveness were quantified, along with prey choice between surface (Drosophila), midwater (Artemia), and benthic (Tubifex) prey; microdistribution was also recorded. The experiments demonstrated that stickleback were highly aggressive towards chinook, and would drive them away from optimal feeding territories. Chinook consumed surface prey only when tested with stickleback, exploiting benthic and midwater prey when feeding alone. Stickleback demonstrated no significant difference in diet between single and mixed species trials, which is consistent with the supposition of strongly asymmetrical competition for food and space. Field data lend further support to this premise; a marked difference observed in diet suggests microhabitat partitioning between the two species, with stickleback feeding on benthos and chinook largely consuming surface prey. This thesis proposes that interactive segregation is an important process between sympatric stickleback and juvenile chinook in estuarine tidal channels and might have important implications for Fraser chinook stocks. / Science, Faculty of / Zoology, Department of / Graduate
8

A Landscape Approach to Determining and Predicting Juvenile Coho Salmon (<i>Oncorhynchus kisutch</i>) Movement Timing and Growth Patterns Prior to Ocean Entry

Johnson, Amelia Lee 29 August 2016 (has links)
Coho salmon (Oncorhynchus kisutch) rely on unique habitats during the winter season, which may dictate how much individuals may grow and when migration from freshwater rearing habitat to the ocean occurs. Here I analyze movement timing and growth patterns for coho salmon through a field-based study and a literature review. For the field portion, I examined hatchery-stocked juvenile coho salmon across four stream basins in the Russian River watershed, California to determine the relative importance of climate, landscape, and fish size metrics in predicting movement and growth patterns over a winter rearing and spring smolt outmigration time period (December 2014-June 2015). I observed three unique movement strategies: winter parr movement, spring smolt movement, and inter-tributary movement. Movement was predicted in relation to daily temperature and precipitation, followed by in-stream and upslope basin conditions in random forest modeling. Specifically, fish that moved later were associated with basins that contained higher productivity and low-gradient floodplain habitats, while fish that moved earlier came from streams that lacked invertebrate prey and had limited low-gradient rearing habitat. Fish size and timing of movement were the primary predictors of growth, with relatively larger fish in the spring growing faster than fish that were relatively smaller prior to winter. These relationships suggest that hatchery-release fish are still highly influenced by environmental conditions once released, especially in terms of initial seasonal movement, and that watershed conditions should be considered when utilizing hatchery-rearing programs to supplement wild fish populations. In North America, coho salmon populations are distributed from Alaska through California, and may exhibit unique movement and growth patterns in relationship to population-scale vulnerability (Endangered Species Act listing), basin area, and availability and types of rearing habitat. For the second part of my thesis, I conducted a literature review to assess what factors are commonly considered in predicting movement and growth patterns for these fish, as well as the types (season and life stage) and number of movement strategies reported. Eighteen studies were summarized, of which sixteen identified unique movement strategies, ranging from one to four. Despite a wide range of basin areas and latitudes, winter parr and spring smolt movements were commonly observed, with authors primarily relating these behaviors to in-stream habitat and fish size metrics. Additionally, growth was linked positively and primarily with off-channel winter rearing, which may outweigh the importance of fish size in predicting growth when high quality rearing habitats are available during the winter season. Recognizing movement timing diversity and its drivers can help recover threatened coho salmon populations. More widely distributed populations may have unique phenotypic expressions based on localized genetic and environmental interactions, increasing diversity and overall stability across the population, a concept known as the portfolio effect. Understanding fish-habitat relationships can aid recovery efforts by providing a framework of climatic and watershed conditions that support unique behaviors, even in already severely limited populations.
9

Interspecific interactions affecting the foraging behavior of chum salmon fry (Oncorhynchus keta)

Tompkins, Arlene Marie January 1991 (has links)
Interactions between fish utilizing nearshore habitats of the Fraser River estuary were investigated by field observations and laboratory experiments. Chum salmon fry (Oncorhynchus keta) were the most abundant salmonid captured between April and June. Non-salmonid species captured included: threespine stickleback (Gasterosteus aculeatus), prickly sculpin (Coitus asper), and peamouth chub (Mylocheilus caurinus). Potential predators included: prickly sculpin, and northern squawfish (Ptychocheilus oregonensis), but few had been feeding on fish. Chum fry fed predominantly on surface insects but the proportion of benthic prey in the diet increased over time. Stickleback shared the greatest diet overlap with chum fry. Interactions between two dissimilar prey, chum fry and threespine stickleback, and a predator, cutthroat trout (Oncorhynchus clarki) were investigated in the laboratory. Prey response to hungry and satiated predators was related to the degree of risk. Although attack rates by trout on chum and stickleback were similar, trout captured more stickleback than chum, but consumed both prey at similar rates. I tested the hypotheses that prey foraging efficiency is reduced in the presence of a predator and increased in the presence of alternate prey. When alone, chum fed on surface Drosophila and mid-water Daphnia, while stickleback fed on benthic Tubifex and Daphnia. The feeding efficiency of chum increased in the presence of stickleback and decreased in the presence of trout. Hatchery and wild chum showed opposite dietary shifts in the presence of trout. Hatchery chum shifted from surface to mid-water feeding and the number of fish feeding significantly decreased. Wild chum fed at the surface, at significantly decreased feeding rates. In the presence of stickleback and trout the feeding behaviour of chum was similar to that when chum were alone. Stickleback feeding behaviour was not affected by presence of trout or chum. Chum and stickleback detected Daphnia faster than Drosophila or Tubifex, and chum responded to Daphnia significantly faster than stickleback. Foraging time per item was significantly less for chum than stickleback. Habitat use by fish prey was investigated in the presence and absence of trout and alternate prey. Wild chum shifted from mid-water to the surface in the presence of trout, but returned to mid-water when stickleback were present. Stickleback fed in bottom habitats regardless of the presence of trout or chum. When prey were confined to specific depths in the water column, trout attacked chum more frequently than stickleback in all locations and attacked both prey more frequently within 24 cm of the substrate. Movement by prey did not affect the attack rate. When given a choice between a food-rich open water habitat and a food-deficient vegetated habitat in the presence of trout and alternate prey, chum and stickleback used vegetated refugia significantly more in the presence of trout. Alternate prey presence decreased the proportion of chum but increased the proportion of stickleback using vegetation. Behavioural responses to avoid predation significantly reduced the foraging efficiency of prey. Chum showed stronger responses to trout than stickleback. The presence of stickleback reduced the effect of predation on foraging efficiency. Possible explanations for the positive effect of stickleback on chum feeding efficiency were experimentally examined including: social facilitation, reduced intraspecific competition, and the calming influence of stickleback on chum behaviour ("dither"). The results suggest that stickleback have a calming influence on chum behaviour and that mixed species feeding groups may reduce intraspecific competition. / Science, Faculty of / Zoology, Department of / Graduate

Page generated in 0.0506 seconds