• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 112
  • 37
  • 15
  • 9
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 245
  • 43
  • 41
  • 23
  • 22
  • 22
  • 21
  • 21
  • 19
  • 19
  • 19
  • 17
  • 16
  • 16
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Chloride Diffusivity and Aging Factor Determined on Field Simulated Concrete Exposed to Seawater

Unknown Date (has links)
Chloride diffusivity in high performance concrete is influenced by the exposure environment, aside from the concrete mixture properties like, water to cementitious ratio (w/cm) and presence of add-on pozzolans. In this study, a set of concrete specimens (eleven-different concrete mixtures) were cast and exposed to three different environmental conditions (Tidal, Splash and Barge) in which the solution was seawater or brackish water. These exposures simulated environmental field conditions. After the specimens had been wet cured for 32 days (on average), the specimens were exposed to three different field simulation conditions for up to 54 months. The specimens under the field simulated conditions were cored at 6, 10, 18, 30 and 54 months at four elevations and then the chloride profiles were obtained from the cores. The apparent diffusivity values for each profile were calculated based on Fick’s 2nd law. Then, the aging factor “m” was calculated by regression analysis of the diffusivity values vs. time (days) plotted in the log10-log10 scale. This was done for samples exposed to the three different exposure conditions and then the results were compared side-by-side. First, the “m” values were calculated using the exposure duration. Then, to study the effect of including the curing time on “m” value, the curing time was added to the exposure time and a new calculation and “m” value was obtained and compared with the previous results. Moreover, upon inspecting the chloride diffusivity values vs. time plots, it was observed that in some cases, a number of data points showed significantly higher or lower values in comparison with the rest of the data points. It was decided to recalculate the “m” values for these cases, and to only use selected data points instead of all data points (i.e., remove outlier data points). In terms of chloride diffusivity value, it was found that in most cases the specimens with higher water to cementitious (w/cm) ratio showed higher diffusivity, as expected. Further, the presence of pozzolans had a noticeable impact on the chloride diffusivity by decreasing the diffusion rate due to microstructure changes that occurred with time. In terms of “m” values, the result for the field simulated conditions showed a range of “m” values dependent on the specimen’s mixture composition and the elevation at which the specimens were cored. It was observed that the chloride diffusivity declined with time and after a certain amount of time (in this research, almost after 30 months) the diffusivity reduction became small and a transition in the slope of the diffusivity trend appeared in a number of cases. After the transition, the diffusivity trend reached either a plateau zone or continued with a significantly lower slope, depending on the time, composition and exposure. It was found that the specimens under tidal and splash field simulation conditions that had only fly ash in their mixtures showed higher “m” values when compared with samples that contained fly ash and silica fume or fifty percent slag. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2019. / FAU Electronic Theses and Dissertations Collection
112

Effects of substrate interactions, toxicity, and bacterial response during cometabolism of chlorinted solvents by nitrifying bacteria

Ely, Roger L. 05 January 1996 (has links)
Graduation date: 1996
113

Protecting Group-free Synthesis of Glycosides

Paul, Caroline Emilie 20 March 2012 (has links)
Carbohydrates play major roles in many biological processes. Therefore, the synthesis of oligosaccharides is of considerable interest for biological, medicinal, and pharmacological studies. Many approaches have been developed for the synthesis of oligosaccharides, in which the main focus is often the formation of the glycosidic bonds. Traditional approaches use protecting group strategies that can be time consuming and can result in poor overall yield. This thesis describes the protecting group-free synthesis of a series of glycosyl donors of a range of mono- and disaccharides. These donors can be used to synthesize unprotected glycosyl chlorides, observed in situ. Reaction of the glycosyl chlorides with a variety of nucleophiles afforded the expected displacement products, giving access to a range of O-, N-, and S-linked glycosides, without resorting to the use of protecting groups.
114

Protecting Group-free Synthesis of Glycosides

Paul, Caroline Emilie 20 March 2012 (has links)
Carbohydrates play major roles in many biological processes. Therefore, the synthesis of oligosaccharides is of considerable interest for biological, medicinal, and pharmacological studies. Many approaches have been developed for the synthesis of oligosaccharides, in which the main focus is often the formation of the glycosidic bonds. Traditional approaches use protecting group strategies that can be time consuming and can result in poor overall yield. This thesis describes the protecting group-free synthesis of a series of glycosyl donors of a range of mono- and disaccharides. These donors can be used to synthesize unprotected glycosyl chlorides, observed in situ. Reaction of the glycosyl chlorides with a variety of nucleophiles afforded the expected displacement products, giving access to a range of O-, N-, and S-linked glycosides, without resorting to the use of protecting groups.
115

Anhydride derivatives of trimellitic anhydride

Barker, Richard G. 01 January 1963 (has links)
No description available.
116

Chemically deposited optical fiber humidity sensor

Gaikwad, Parikshit S. January 2003 (has links)
Thesis (M.S.)--Mississippi State University. Department of Electrical and Computer Engineering. / Title from title screen. Includes bibliographical references.
117

THE EFFECT OF HYDROSTATIC PRESSURE ON THE IONIC CONDUCTIVITY OF SILVER-CHLORIDE

Abey, Albert E., 1935- January 1964 (has links)
No description available.
118

Organic Sulfenyl Chlorides as Precursors for the Modification of Gold Surfaces

Muhammad, Hamida 16 May 2013 (has links)
Self-assembled monolayers (SAMs) of organosulfur precursors on gold have been extensively used since they offer a wide range of technological applications such as corrosion inhibition, lubrication, adhesion promotion/inhibition, nanofabrication, chemical and biosensors, catalysis, and molecular electronics. Furthermore, the electronic and optical properties of aromatic SAMs make them a potential candidate for molecular electronics. However, these practical applications are limited by the short-range ordering, low packing density, irreproducibility, and inferior quality of SAMs, which are more critical for aromatic SAMs. Therefore, the discovery of alternative precursors is essential. This thesis reports for the first time, the use of organic sulfenyl chlorides as precursors for the modification of gold surfaces. These precursors may help to overcome some practical limitations of the traditional organosulfur precursors. The modification is done in a non-aqueous medium. Characterization of the modified surfaces is performed by X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS), and scanning tunnelling microscopy (STM). Through the use of 4-nitrophenyl sulfenyl chloride, evidence for the formation of well-ordered aromatic SAMs formation on gold is provided. XPS data shows that the modification involves the scission of the S-Cl bond. PM-IRRAS studies further indicate that the adsorbed molecules are nearly vertically oriented on the surface. Both short and long-range well-ordered aromatic SAMs (a 4 x √3 rectangular and √3 x √3 hexagonal unit cells) are obtained from the STM images using two different modification conditions. This molecular density is usually only observed for aliphatic SAMs using the traditional precursors. Along with the main hexagonal lattice, the reversible distinct superstructures including hexagons, partial hexagons, parallelograms, and zigzags resulting from specific arrangements of adsorbed molecules provide submolecular details. This is the first direct experimental example, where the STM has shown its effectiveness to provide physical structure information of standing-up aromatic SAMs at room temperature. This work also provides some insight into a heavily debated issue regarding the origin of the various features and contrasts obtained in STM images of SAMs. The use of 2-nitrophenyl sulfenyl chloride and 2,4-dinitrophenyl sulfenyl chloride for the formation of aromatic SAMs on Au provides some insight regarding the modification extent and the effect of a nitro substituent (at ortho position ) on the quality of nitrophenyl thiolate SAMs on gold. XPS, PM-IRRAS, electrochemistry and STM provide evidence for the formation of less ordered, low density and less stable SAMs that may decompose to sulfur at longer modification times. The efficient deposition of sulfur on gold is observed using a series of substituted methane sulfenyl chlorides (triphenylmethane sulfenyl chloride, trichloromethane sulfenyl chloride and chlorocarbonyl sulfenyl chloride). The XPS, STM and electrochemical data show the formation of high density sulfur phases. These include rhombus, rectangular, and zig-zag sulfur structures. A mechanism is suggested involving the cleavage of the S-Cl bond and the ejection of the molecular backbone. This study also suggests that substituted methane sulfenyl chlorides do not form long-range ordered SAMs.
119

1, 3, 2- dioxaphospholene sulfenyl chloride condensation.

Mathiaparanam, Ponnampalam. January 1970 (has links)
No description available.
120

Heats of mixing for liquid systems containing chloride, hydroxyl and methylene groups : measurement and prediction by an analytical group solution model

Kalu, Egwuonwu Ukoha. January 1975 (has links)
No description available.

Page generated in 0.0414 seconds