• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • Tagged with
  • 7
  • 7
  • 7
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Application of in-situ bioremediation technology to remediate trichloroethylene-contaminated groundwater

Tseng, Shih-hao 02 September 2009 (has links)
Chlorinated organic compounds are widely used in various industrial processes. Due to their high density and low water solubility, they are mainly utilized as cleaning solvents in dry cleaning operations, as well as semiconductor manufacturers. Many chlorinated organic compounds spilled sites contain residuals, which present in a pure liquid phase (dense non-aqueous phase liquids, DNAPLs). Trichloroethylene (TCE) is the most typical compound as a result. In situ bioremediation has been successfully used for the removal of TCE. This process has several advantages, such as relative simplicity, low cost, and potentially remarkable efficiency in contamination removal than others. By using the in situ bioremediation to remediate TCE contaminated groundwater, it must ensure (1) biodegradability of contaminants, and the presence of a competent biodegrading population of microorganisms, (2) presence of electron acceptors, and (3) environment condition and, nutrient sources. A field study for biodegradation TCE through molasses injection was conducted at the industrial trading estate in Kaohsiung City. The study included electronic products, semiconductor, nicety optical industry and so on. Molasses, nitrate and phosphate were introduced from injection well (BW1-1 and BW2-1) into aerobic and anaerobic groundwater contaminated site. In the aerobic zone, there were four wells being monitored: BW1-1, C029, BW1-2 and BW1-3. After 213 days of biostimulation treatment, TCE concentration detection results showed TCE concentrations in all wells monitored. BW1-1 and C029, there was a sharp decrease from 0.0853 mg/L to below the detection limit and from 0.1340 mg/L to 0.0038 mg/L. BW1-2 and BW1-3 showed a slight decrease from 0.0668 mg/L to 0.0211 mg/L and from 0.0323 mg/L to 0.0161 mg/L. After treatments, TCE concentrations in all wells monitored were dropped to 0.05 mg/L. In anaerobic zone, there were four wells being monitored: BW2-1, SW-4, BW2-2 and BW2-3. After 193 days of biostimulation treatment, TCE concentration detection results showed TCE concentrations in all wells monitored. BW2-1, SW-4, BW2-2 and BW2-3 all had a slight decrease from 0.0399 mg/L to 0.0043 mg/L, from 0.14603 mg/L to 0.0687 mg/L, from 0.1030 mg/L to 0.0365 mg/L and from 0.0492 mg/L to 0.0289 mg/L. According to the results from BIOCHLOR modeling, elevated aqueous concentration of chloroethenes with a classical reduction pathway for TCE leading to an accumulation of vinyl chloride and ethane. All the results revealed that bioremediation technology is one of the more feasible approaches to clean up TCE contaminated groundwater in this field.
2

Application of in situ chemical oxidation technology to remediate chlorinated-solvent contaminated groundwater

Wen, Yi-ting 22 August 2010 (has links)
Groundwater at many existing and former industrial sites and disposal areas is contaminated by halogenated organic compounds that were released into the environment. The chlorinated solvent trichloroethylene (TCE) is one of the most ubiquitous of these compounds. In situ chemical oxidation (ISCO) has been successfully used for the removal of TCE. The objective of this study was to apply the ISCO technology to remediate TCE-contaminated groundwater. In this study, potassium permanganate (KMnO4) was used as the oxidant during the ISCO process. The study consisted bench-scale and pilot-scale experiments. In the laboratory experiments, the major controlling factors included oxidant concentrations, effects of soil oxidant demand (SOD) on oxidation efficiency, and addition of dibasic sodium phosphate on the inhibition of production of manganese dioxide (MnO2). Results show that higher molar ratios of KMnO4 to TCE corresponded with higher TCE oxidation rate under the same initial TCE concentration condition. Moreover, higher TCE concentration corresponded with higher TCE oxidation rate under the same molar ratios of KMnO4 to TCE condition. Results reveal that KMnO4 is a more stable and dispersive oxidant, which is able to disperse into the soil materials and react with organic contaminants effectively. Significant amount of MnO2 production can be effectively inhibited with the addition of Na2HPO4. Results show that the increase in the first-order decay rate was observed when the oxidant concentration was increased, and the half-life was approximately 24.3 to 251 min. However, the opposite situation was observed when the second-order decay rate was used to describe the reaction. Results from the column experiment show that the breakthrough volumes were approximately 50.4 to 5.06 pore volume (PV). Injection of KMnO4 would cause the decrease in TCE concentration through oxidation. Results also indicate that the addition of Na2HPO4 would not inhibit the TCE removal rate. In the second part of this study, a TCE-contaminated site was selected for the conduction of pilot-scale study. A total of eight remediation wells were installed for this pilot-scale study. The initial TCE concentrations of the eight wells were as follows: C1 = 0.59 mg/L, C1-E = 0.64 mg/L, C1-W = 0.61 mg/L, EW-1 = 0.65 mg/L, EW-1E = 0.62 mg/L, EW-1W = 0.57 mg/L, C2 = 0.62 mg/L, C3 = 0.35 mg/L. C1, EW-1, C2, and C3 were located along the groundwater flow direction from the upgradient (C1) to the downgradient location (C3), and the distance between each well was 3 m. C1-E and C1-W were located in lateral to C1 with a distance of 3 m to C1. EW-1E and EW-1W were in lateral to EW-1 with a distance of 3 m to EW-1. In the first test, 2,700 L of KMnO4 solution was injected into each of the three injection wells (C1, C1-E, and C1-W) with concentration of 5,000 mg/L. Three injections were performed with an interval of 6 hr between each injection. After injection, the TCE concentrations in those three wells dropped down to below detection limit (<0.0025 mg/L). However, no significant variations in TCE concentrations were observed in other wells. In the second test, 2,700 L of KMnO4 solution was injected into injection well (EW-1) with concentration of 5,000 mg/L. Six injections were performed with an interval of 6 hr between each injection. After injection, the TCE concentrations in the injection well dropped down to below detection limit (<0.0025 mg/L). TCE concentrations in (C1, C1-E, C1-W, EW-1E, EW-1W, C2, and C3) dropped to 0.35-0.49 mg/L. After injection, no significant temperature and pH variation was observed. However, increase in conductivity and oxidation-reduction potential (ORP) was observed. This indicates that the KMnO4 oxidation process is a potential method for TCE-contaminate site remediation. The groundwater conductivity increased from 500 £gS/cm to 1,000 £gS/cm, and ORP increased from 200 to 600 mv. Increase in KMnO4, MnO2, and total Mn was also observed in wells. Results from the slug tests show that the hydraulic conductivity remained in the range from 10-4 to 10-5 m/sec before and after the KMnO4 injection.
3

GC/MS Analysis of Chlorinated Organic Compounds in Municipal Wastewater After Chlorination

Henderson, James E. (James Edward) 08 1900 (has links)
A study has been conducted for the qualitative and Quantitative analysis of chlorinated organic compounds in water. The study included the adaptation of Amberlite XAD macroreticular resin techniques for the concentration of municipal wastewater samples, followed by GC/MS analysis. A new analytical method was developed for the determination of volatile halogenated organics using liquid-liquid extraction and electron capture gas chromatography. And, a computer program was written which searches raw GC/MS computer files for halogen-containing organic compounds.
4

Développement de techniques pour la remédiation d'aquifères pollués par des composés organochlorés / Development of techniques for the remediation of aquifers contaminated by chlorinated organic compounds

Maire, Julien 29 October 2018 (has links)
Les zones sources formées par les organochlorés dans les sols (DNAPL) peuvent contaminer les aquifères pour plusieurs siècles en alimentant un panache de composés dissous. Pour épuiser ces zones sources, pomper le DNAPL est la solution la plus simple, mais l’efficacité est limitée par le cheminement préférentiel de l'eau dans le sol et les forces capillaires qui piègent le DNAPL. Les stratégies plus agressives (dissolution, traitement thermique, dégradation chimique…) sont aussi plus coûteuses. Dans cette thèse, deux stratégies de traitement à base de mousse de surfactant ont été développées et évaluées au laboratoire en préparation d’un essai terrain. La première stratégie utilise l’injection de mousse en zone source pour mobiliser de façon contrôlée le DNAPL et le diriger vers des puits de pompage. Dans les meilleures conditions, la saturation en DNAPL après traitement a pu être abaissé en dessous de 1 % avec une consommation de surfactant inférieure à 10 g kg-1 de DNAPL éliminé. La seconde stratégie utilise la mousse comme vecteur de réactif (hydrogène) pour accélérer la biodégradation des composés dissous dans le panache. Sous forme de mousse, l’hydrogène a été délivré de façon ciblée et plus rémanente dans l’horizon à traiter. Les technologies développées se sont montrées très prometteuses à l’échelle du terrain et lors de l’évaluation technico-économique. De la recherche reste nécessaire pour rendre ces procédés plus prédictibles lors de leur mise en œuvre. / Source zones formed by chlorinated organic compounds in soils (DNAPL) can contaminate aquifers for several centuries by feeding a plume of dissolved compounds. To deplete those source zones, DNAPL pumping is the simplest option, but the efficacy is limited by preferential water flow in the soil and capillary forces that are trapping the DNAPL. More aggressive strategies (dissolution, thermal treatment, chemical degradation...) are also costlier. Within this thesis work, two treatment strategies using surfactant foam were developed and assessed at lab-scale to prepare field assessment. The first strategy relies on foam injection in the source zone to mobilize the DNAPL in a controlled fashion to drive it ahead to pumping wells. In the best conditions, DNAPL saturation was lowered below 1% after treatment with a surfactant consumption below 10 g kg-1 of DNAPL removed. The second strategy uses foam as a reagent (hydrogen) carrier to accelerate the biodegradation of dissolved compounds in the plume. When injected as a foam, hydrogen was delivered in a targeted and more persistent manner in the strata to be treated. Developed technologies showed to be promising at field-scale and when the technico-economic assessment was conducted. Research still remains to be done to make those techniques more predictable during their implementation.
5

Synthesis of Catalytic Membrane Surface Composites for Remediating Azo Dyes in Solution

Sutherland, Alexander January 2019 (has links)
In the past 30 years zero-valent iron (ZVI) has become an increasingly popular reducing agent technology for remediating environmental contaminants prone to chemical degradation. Azo dyes and chlorinated organic compounds (COCs) are two classes of such contaminants, both of which include toxic compounds with known carcinogenic potential. ZVI has been successfully applied to the surfaces of permeable reactive barriers, as well as grown into nanoscale particles (nZVI) and applied in-situ to chemically reduce these contaminants into more environmentally benign compounds. However, the reactivity of ZVI and nZVI in these technologies is limited by their finite supply of electrons for facilitating chemical reduction, and the tendency of nZVI particles to homo-aggregate in solution and form colloids with reduced surface area to volume ratio, and thus reduced reactivity. The goal of this project was to combine reactive nanoparticle and membrane technologies to create an electro-catalytic permeable reactive barrier that overcomes the weaknesses of nZVI for the enhanced electrochemical filtration of azo dyes in solution. Specifically, nZVI was successfully grown and stabilized in a network of functionalized carbon nanotubes (CNTs) and deposited into an electrically conductive thin film on the surface of a polymeric microfiltration support membrane. Under a cathodic applied voltage, this thin film facilitated the direct reduction of the methyl orange (MO) azo dye in solution, and regenerated nZVI reactivity for enhanced electro-catalytic operation. The electro-catalytic performance of these nZVI-CNT membrane surface composites to remove MO was validated, modelled, and optimized in a batch system, as well as tested in a dead-end continuous flow cell system. In the batch experiments, systems with nZVI and a -2 V applied potential demonstrated synergistic enhancement of MO removal, which indicated the regeneration of nZVI reactivity and allowed for the complete removal of 0.25 mM MO batches within 2-3 hours. Partial least squares regression (PLSR) modelling was used to determine the impact of each experimental parameter in the batch system and provided the means for an optimization leading to maximized MO removal. Finally, tests in a continuous system yielded rates of MO removal 1.6 times greater than those of the batch system in a single pass, and demonstrated ~87% molar removal of MO at fluxes of approximately 422 lmh. The work herein lays the foundation for a promising technology that, if further developed, could be applied to remediate azo dyes and COCs in textile industry effluents and groundwater sites respectively. / Thesis / Master of Applied Science (MASc)
6

Pollutants associated with mass mortality of Nile crocodiles (Crocodylus niloticus) in the Kruger National Park, South Africa / P.L. Booyens

Booyens, Paul Lodewyk January 2011 (has links)
The first of a series of mass mortalities of Nile crocodiles in the Olifants and Letaba rivers in the Kruger National Park (KNP) was reported in the winter of 2008. The present study investigated the levels and possible effects on eggshell thickness of inorganic elements and organic pollutants in Nile crocodile eggs from these rivers, and comparing them with eggs from a reference crocodile farm and a reference dam inside the KNP. The egg contents were analyzed for chlorinated organic compounds and brominated flame retardants. Eggshells and egg contents were analyzed for inorganic elements. The elemental concentrations in the eggshells and contents were low when compared with previous studies. The highest concentrations were found in the eggs from the reference crocodile farm. The eggs from the reference dam and the crocodile farm had thicker shells, and the eggs from the Olifants and Letaba rivers had thinner shells. Not all eggs in a female develop at the same rate, while eggshell formation presumably occurs at the same time for all eggs. As a result, the elemental profile of egg contents may differ between eggs of the same clutch, but less so for the shells. Weak or no associations were found between the elemental concentrations of the content and eggshells and eggshell thinning. A possible organic pollutant–induced eggshell thinning effect was found. The compounds found were not at levels that could have caused the mortalities, but may affect the sex ratios through endocrine disruption. Further studies are therefore required. / Thesis (M.Sc (Environmental Science))--North-West University, Potchefstroom Campus, 2011.
7

Pollutants associated with mass mortality of Nile crocodiles (Crocodylus niloticus) in the Kruger National Park, South Africa / P.L. Booyens

Booyens, Paul Lodewyk January 2011 (has links)
The first of a series of mass mortalities of Nile crocodiles in the Olifants and Letaba rivers in the Kruger National Park (KNP) was reported in the winter of 2008. The present study investigated the levels and possible effects on eggshell thickness of inorganic elements and organic pollutants in Nile crocodile eggs from these rivers, and comparing them with eggs from a reference crocodile farm and a reference dam inside the KNP. The egg contents were analyzed for chlorinated organic compounds and brominated flame retardants. Eggshells and egg contents were analyzed for inorganic elements. The elemental concentrations in the eggshells and contents were low when compared with previous studies. The highest concentrations were found in the eggs from the reference crocodile farm. The eggs from the reference dam and the crocodile farm had thicker shells, and the eggs from the Olifants and Letaba rivers had thinner shells. Not all eggs in a female develop at the same rate, while eggshell formation presumably occurs at the same time for all eggs. As a result, the elemental profile of egg contents may differ between eggs of the same clutch, but less so for the shells. Weak or no associations were found between the elemental concentrations of the content and eggshells and eggshell thinning. A possible organic pollutant–induced eggshell thinning effect was found. The compounds found were not at levels that could have caused the mortalities, but may affect the sex ratios through endocrine disruption. Further studies are therefore required. / Thesis (M.Sc (Environmental Science))--North-West University, Potchefstroom Campus, 2011.

Page generated in 0.1043 seconds