• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 6
  • 1
  • Tagged with
  • 20
  • 13
  • 6
  • 6
  • 5
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Caractérisation des capacités métaboliques des populations microbiennes impliquées dans les processus de bioremédiation des chloroéthènes par des approches moléculaires haut débit : les biopuces ADN fonctionnelles / Characterization of microbial populations’ capacities involved in chloroethenes bioremediation processes using high-throughput molecular tools : functional DNA microarrays

Dugat-Bony, Eric 07 November 2011 (has links)
Les chloroéthènes sont les polluants majeurs des eaux souterraines et des nappes phréatiques. De par leur toxicité et leur effet cancérigène, ils représentent une préoccupation majeure pour les autorités publiques et sanitaires. La restauration des sites contaminés est possible par des techniques de dépollution biologique impliquant les microorganismes (bioremédiation microbienne). Cependant, la réussite des traitements dépend à la fois des conditions physicochimiques du site pollué et des capacités de dégradation de la microflore indigène. Ainsi, pour optimiser les processus de décontamination, l’identification et le suivi des différentes populations microbiennes sont indispensables avant et pendant le traitement. Les biopuces ADN fonctionnelles (FGA, Functional Gene Array), outils moléculaires haut débit, sont particulièrement bien adaptées pour des applications en bioremédiation. Leur élaboration nécessite de disposer de logiciels performants pour le design de sondes qui combinent à la fois une forte sensibilité, une très bonne spécificité et un caractère exploratoire, ce dernier étant indispensable pour la détection des séquences connues mais surtout de celles encore jamais décrites au sein d’échantillons environnementaux. Un nouveau logiciel, autorisant la sélection de sondes combinant tous ces critères, a été développé et nommé HiSpOD. Son utilisation pour la construction d’une FGA dédiée aux voies de biodégradation des chloroéthènes a permis d’évaluer l’effet de traitements de biostimulation sur la microflore indigène pour plusieurs sites industriels contaminés. Les données révèlent différentes associations entre microorganismes déhalorespirants qui sont fonction des paramètres environnementaux. / Chlorinated solvents are among the most frequent contaminants found in groundwater and subsurface ecosystems. Because of their high toxicity and carcinogenicity, they represent a serious risk for human health and the environment. Thus, such polluted sites need a rehabilitation treatment. Among remediation solutions, microbial bioremediation represents a less invasive and expensive alternative than physico-chemical treatments. However, the process efficiency greatly depends on the environmental conditions and the microbial populations’ biodegradation capacities. Therefore, bioremediation treatment optimization requires the identification and monitoring of such capacities before and during the treatment. Functional Gene Arrays (FGA), by profiling environmental communities in a flexible and easy-to-use manner, are well adapted for an application in bioremediation. But, constructing efficient microarrays dedicated to microbial ecology requires a probe design step allowing the selection of highly sensitive, specific and explorative oligonucleotides. After a detailed state of the art on probe design strategies suitable for microbial ecology studies, we present new software, called HiSpOD, generating efficient explorative probes for FGA dedicated to environmental applications. Finally, this bioinformatics tool was used to construct a FGA targeting most genes involved in chloroethenes biodegradation pathways which allowed the evaluation of biostimulation treatments conducted on indigenous bacterial populations for several industrial contaminated sites.
2

Evaluation des capacités bioremédiatrices d'une mangrove impactée par des eaux usées domestiques. Application au site pilote de Malamani, Mayotte.

Herteman, Melanie 22 September 2010 (has links) (PDF)
Réalisés à Mayotte, ces travaux ont permis d'évaluer les capacités de bioremédiation d'une mangrove vis-à-vis d'eaux usées domestiques prétraitées en valorisant cet écosystème à haute valeur écologique, soumis à une pression anthropique importante. A partir d'un réseau de parcelles (témoins et impactées par des effluents domestiques), un suivi a été réalisé sur la mangrove : végétation, eau, sédiment, crabes. Les résultats montrent que cet écosystème joue un rôle analogue à celui des filtres plantés et semble être adaptée pour un traitement secondaire. Cependant, si les conclusions à court terme paraissent encourageantes, l'impact à long terme des eaux usées sur la biodiversité de cet écosystème et sur son fonctionnement reste à approfondir avant d'utiliser un tel système de traitement in situ.
3

Caractérisation des capacités métaboliques des populations microbiennes impliquées dans les processus de bioremédiation des chloroéthènes par des approches moléculaires haut débit : les biopuces ADN fonctionnelles

Dugat-Bony, Eric 07 November 2011 (has links) (PDF)
Les chloroéthènes sont les polluants majeurs des eaux souterraines et des nappes phréatiques. De par leur toxicité et leur effet cancérigène, ils représentent une préoccupation majeure pour les autorités publiques et sanitaires. La restauration des sites contaminés est possible par des techniques de dépollution biologique impliquant les microorganismes (bioremédiation microbienne). Cependant, la réussite des traitements dépend à la fois des conditions physicochimiques du site pollué et des capacités de dégradation de la microflore indigène. Ainsi, pour optimiser les processus de décontamination, l'identification et le suivi des différentes populations microbiennes sont indispensables avant et pendant le traitement. Les biopuces ADN fonctionnelles (FGA, Functional Gene Array), outils moléculaires haut débit, sont particulièrement bien adaptées pour des applications en bioremédiation. Leur élaboration nécessite de disposer de logiciels performants pour le design de sondes qui combinent à la fois une forte sensibilité, une très bonne spécificité et un caractère exploratoire, ce dernier étant indispensable pour la détection des séquences connues mais surtout de celles encore jamais décrites au sein d'échantillons environnementaux. Un nouveau logiciel, autorisant la sélection de sondes combinant tous ces critères, a été développé et nommé HiSpOD. Son utilisation pour la construction d'une FGA dédiée aux voies de biodégradation des chloroéthènes a permis d'évaluer l'effet de traitements de biostimulation sur la microflore indigène pour plusieurs sites industriels contaminés. Les données révèlent différentes associations entre microorganismes déhalorespirants qui sont fonction des paramètres environnementaux.
4

Vers un traitement passif des drainages miniers acides (DMA) riches en arsenic par oxydation biologique du fer et de l'arsenic / Towards a passive treatment of arsenic-rich acid mine drainage (AMD) by biological iron and arsenic oxidation

Fernandez Rojo, Lidia 27 November 2017 (has links)
Les déchets sulfurés issus de l’extraction des minerais métalliques génèrent des drainages miniers acides (DMA) contenant des éléments toxiques tels que l’arsenic. Les procédés de traitement passifs basés sur l’oxydation bactérienne du fer et de l’arsenic, en favorisant la précipitation de ces éléments sous une forme stable, pourraient représenter une solution efficace et économique pour traiter cette pollution. Dans ce contexte, l’objectif général de cette thèse était de mieux comprendre les facteurs environnementaux et opérationnels qui contrôlent l’efficacité d’élimination de l’arsenic. Une approche en pilote à flux continu a été mise en oeuvre afin de se rapprocher des conditions réelles d’un traitement. L’étude a été conduite d’abord à l’échelle d’un bioréacteur de paillasse en conditions contrôlées (température, lumière, débit, temps de séjour et hauteur d’eau), puis dans un dispositif de taille supérieure, fonctionnant de manière totalement passive et in situ. Ces dispositifs ont été alimentés avec de l’eau d’un DMA riche en arsenic, issue de l’ancien site minier de Carnoulès, dans le Gard. Les caractéristiques de l’eau et des bioprécipités au sein de ces pilotes, en particulier le rédox du fer et de l’arsenic, ont été suivis dans différentes conditions environnementales et d’opération par des méthodes de spéciation liquide et solide (HPLC-ICP-MS, EXAFS, XANES), des analyses minéralogiques (DRX) et des analyses microbiologiques (ARISA, séquençage haut débit du gène de l'ARNr 16S, quantification du gène aioA). Les résultats issus des expériences en laboratoire ont mis en évidence l’effet de différents paramètres opérationnels (hauteur d’eau, temps de rétention hydraulique, et présence/absence d’une pellicule flottante) sur les performances du traitement, ainsi que sur la microbiologie et la minéralogie des bioprécipités formés. Le dispositif de terrain a permis de tester les performances du procédé dans des conditions environnementales fluctuantes (variabilité de la physico-chimie de l’eau d’entrée et de la température) et d’acquérir des connaissances nouvelles sur l’évolution des bioprécipités au cours de six mois de traitement. Les connaissances acquises dans cette thèse pourront servir de base à la conception d’une étape d’élimination de l’arsenic dans les processus de traitement des DMA. / Acid mine drainage (AMD) are produced by sulfuric tailings from mining of metal ores. They are characterized by high contents of toxic elements like arsenic. One efficient and economical solution for the treatment of As in these tailings could be the use of a passive method based on iron and arsenic bacterial oxidation, and the subsequent precipitation of these elements in a stable form. In this context, the objective of this PhD thesis was to better understand the environmental and operational factors controlling the efficiency of As removal processes. A continuous-flow pilot approach was implemented in order to better reproduce the real treatment conditions. This study was first performed in a bench-scale bioreactor with controlled conditions (temperature, light, flow, residence time and water height). Then, it was performed in a field-scale bioreactor installed in situ, reproducing a passive treatment in real conditions. These devices were fed with As-rich AMD waters from the ancient mine of Carnoulès (Gard, France). Water and bioprecipitate properties were monitored in both devices, specially the redox speciation of iron and arsenic. This monitoring was held for different environmental and operational conditions. Iron and arsenic speciation in liquid and solid phases was measured by different analytical techniques such as HPLC-ICP-MS, EXAFS and XANES. Mineral identification was made by XRD analysis, while microbiological characterization was made by ARISA, high-throughput sequencing of 16S rRNA gene, and aioA gene quantification. Results from the lab-scale experiments evidenced the effects of the different operational parameters (water height, hydraulic retention time and the presence/absence of a floating film) on the treatment performance, as well as on the microbiology and mineralogy of the produced bioprecipitates. The field device was used to test the treatment performance under fluctuating environmental conditions (variability of the physico-chemistry of the feed water and of the temperature) and to gain new knowledge about the evolution of the bioprecipitates during six months of treatment. All the knowledge acquired in this PhD thesis could serve as a basis for the design of an arsenic removal stage in DMA treatment processes.
5

Étude des mécanismes intervenant dans la biodégradation des hydrocarbures aromatiques polycycliques par les champignons saprotrophes telluriques en vue d'applications en bioremédiation fongique de sols pollués / Study of the mechanisms involved in Polycyclic Aromatic Hydrocarbons biodegradation by telluric saprotrophic fungi in order to develop fungal bioremediation applications in polluted soils

Fayeulle, Antoine 12 December 2013 (has links)
La réhabilitation des sols pollués par les Hydrocarbures Aromatiques Polycycliques (HAP) est une problématique importante au niveau européen. Afin de développer une technique de bioremédiation, une collection de 30 souches de champignons saprotrophes est constitués à partir d'échantillons de sols historiquement pollués par les HAP provenant du Nord de la France. Ces souches sont caractérisées pour leur capacités de désorption et de dégradation du Benzo[a]pyrène (BaP) en milieu minéral. Quatre souches présentent des taux de dégradation du BaP supérieur à 30% après seulement 9 jours d'incubation en milieu minéral. Des mesures d'activités enzymatiques sur un panel de 14 souches permettent d'observer des concordances intéressantes entre les capacités de dégradation du BaP et des activités enzymatiques extracellulaires ou liées au cytochrome P450. Des essais au laboratoire de bioaugmentation/biostimulation en microcosmes de sols historiquement contaminés en HAP permettent une augmentation d'environ 25% de la dégradation des HAP totaux par rapport aux témoins après inoculation d'une souche de Talaromyceshelicus dans deux sols d'origines et de textures différentes. Le processus d'incorporation du BaP, un HAP à 5 cycles aromatiques, est étudié en microscopie chez une souche de Fusariumsolani. D'après nos résultats, cette molécule serait incorporée dans les cellules fongiques par un processus actif et dépendant du réseau d'actine du cytosquelette. Ce travail de thèse ouvre ainsi de nouvelles perspectives pour la compréhension des mécanismes de dégradation des HAP par les champignons saprotrophes telluriques et le développement de nouveaux protocoles de bioremédiation fongique des sols. / Recovery of soils polluted by Polycyclic Aromatic Hydrocarbons (PAH) is an important problematic at the European scale. In order to develop a bioremediation technique, a collection of 30 saprotrophic fungal strains is constituted using PAH historically contamined soil samples coming from the north of France. These strains are characterized for their capacity of Benzo[a]pyrene (BaP) desorption and degration in mineral medium. Four strains exhibit BaP degradation rates over 30% after 9 days of incubation in mineral medium. Measurements of enzymatic activities within a panel of 14 strains enable to observe interesting correlations between BaP degradation capacities and extracellular or cytochrome P450-linked enzymatic activities. Lab-scale bioaugmentation/biostimulation experiments in microcosms of PAH historically contamined soils enbale to observe an increase of approximately 25% of the total-PAH degradation compared to the blanks after the inoculation of a strain of Talaromyceshelicus in two soils differing by their origins and textures. The incorporation of BaP, a 5 aromatic rings PAH, is studied through microcopy in the strain Fusariumsolani. According to our results, this molecule would be incorporated in fungal cells through an active mechanism depending on the actin network of the cytoskeleton. This PhD thesis draws new perpectives for the understanding of PAH degradations mechanisms in telluric saprotrophic fungi and for the development of new fungal bioremediation protocols in soils.
6

Elaboration par freeze-casting de matériaux poreux hybrides cellularisés pour la bioremédiation des sols / Elaboration of cellularized hybrid macroporous materials by freeze-casting for soil bioremediation

Christoph, Sarah 27 September 2017 (has links)
L'objectif de ces travaux est l'élaboration de nouveaux matériaux pour la dépollution des sols. Le principe repose sur l'encapsulation de microorganismes ayant des capacités de bioremédiation dans une matrice hybride et macroporeuse. La matrice employée doit à la fois être compatible avec les microorganismes encapsulés et adaptée à l'application visée en termes de structure et de stabilité dans les sols. Le choix des composants employés, mais également les méthodes de mise en forme utilisées ont une influence significative sur ces deux aspects. Les microorganismes choisis (les bactéries Pseudomonas aeruginosa et Shewanella oneidensis) ont été immobilisés dans une matrice hybride, composée de biopolymère (pectine ou alginate) et de silice. La méthode du freeze-casting a été employée simultanément comme méthode d'encapsulation et comme procédé de mise en forme pour l'obtention d'une structure à porosité orientée. La chimie du sol-gel a été utilisée pour recouvrir cette structure par une couche de silice, tout en assurant la survie des organismes encapsulés grâce à des conditions de synthèse douces. Ce travail de thèse a dans un premier temps permis l'identification de paramètres clés à la fois pour la survie des microorganismes et la structure de la matrice. L'influence de la vitesse de congélation et la composition de la matrice (type de biopolymère, présence d'additifs ¿) ont notamment été étudiés afin d'optimiser le taux de survie des bactéries lors de l'encapsulation. Le comportement de ces matériaux a par la suite été évalué dans un sol de référence, tant du point de vue du vieillissement de la matrice que de l'efficacité en termes de dépollution du sol. / The goal of this work is the elaboration of new materials for soil depollution. The principle consists in the encapsulation of microorganisms with bioremediation capabilities in a hybrid porous matrix. Such matrix must be both compatible with the survival of the encapsulated organisms and suitable for the targeted application in terms of structure and in-soil stability. The choice of the components, as well as the processing techniques have a significant influence on these two aspects. The chosen microorganisms (the bacteria Pseudomonas aeruginosa and Shewanella oneidensis) were immobilized within a hybrid matrix, composed of biopolymer (pectin or alginate) as the organic moiety and silica as the inorganic moiety. The freeze-casting technique was used both as a way to encapsulate the microorganisms and to shape the biopolymer into a structure with an oriented porosity. Sol-gel chemistry was used to coat this structure with a silice layer, while ensuring survival of the encapsulated organisms thanks to mild synthetic conditions. This work allowed for the identification of key parameters both regarding the survival of microorganisms toward encapsulation and the final structure of the matrix. The influence of the freezing rate and of the composition of the matrix (type of biopolymer, presence of additives …) have in particular been investigated as a way to optimize bacterial survival rates upon encapsulation. The behavior of the materials was then assessed in a reference soil, from the point of view of the ageing of the matrix, but also regarding the efficiency of the device for soil depollution.
7

Microbiogéochimie, transfert réactif et impact des micropolluants dans les sols. Approche couplée multi-échelles et modélisation.

Martins, Jean 15 September 2008 (has links) (PDF)
Jean M.F. Martins, CR1 CNRS, LTHE (UMR 5564), CNRS, INPG, IRD, Univ. J. Fourier, Grenoble I Résumé : L'ensemble de mes travaux est basé sur une approche pluri et interdisciplinaire développée dans le but d'améliorer nos connaissances et la compréhension du comportement biogéochimique (sorption, biotransformation et transfert) et l'impact des micropolluants dans l'environnement, afin de mieux prédire l'exposition et les impacts sur notre santé ou celle de nos écosystèmes. Au moment ou des polluants émergeants sont détectés dans les eaux et les sols dès qu'on se donne les moyens pour les détecter, et alors que la directive européenne REACH se met en place, les approches de recherche monodisciplinaires montrent de plus en plus clairement leurs limites et font ainsi ressortir le caractère indispensable de la pluridisciplinarité dans l'approche de la problématique de la biogéochimie des polluants. C'est dans ce contexte que j'ai essayé, à chaque fois que cela était nécessaire et possible, de développer une approche interdisciplinaire en rupture avec les approches classiques, en abordant notamment les phénomènes couplés ou cinétiques, dans le but d'évaluer simultanément et de modéliser le comportement biogéochimique (sorption, biotransformation et transferts) et l'impact des micropolluants dans les sols à plusieurs échelles et dans différents contextes biogéochimiques. Les approches ainsi développées ont permis de caractériser les mécanismes de sorption des polluants dans le sol et dans ses différents compartiments, minéral, organique et biotique et d'établir l'effet de ces processus sur le transfert réactifs de ces polluants en combinant des approches expérimentales et théoriques en conditions dynamiques et en faisant appel à des dispositifs technologiques spécifiquement développés. La première partie de ce mémoire concerne l'étude des processus de sorption des micropolluants organiques et métalliques dans les sols, et des divers facteurs qui les contrôlent, notamment la spéciation chimique. Cette spéciation contrôle directement l'ambiance chimique dans les sols, qui correspond à un équilibre de la chimie et de la distribution des micropolluants entre les différents compartiments du sol. Ainsi les interactions des micropolluants avec les constituants abiotiques (minéraux et matière organique) et biotiques (microorganismes) des sols et leur modélisation ont été étudiées par des approches combinées de dynamique des systèmes (colonnes), chimie de solution (batch) et spectroscopiques ou microscopiques (spectroscopie EXAFS, MEB- et MET-EDX). Le premier exemple abordé a concerné la réactivité de composés organiques (dinitrophénols) en mono- et multi-contaminations. Pour cette dernière condition, il a été montré de manière originale l'existence de processus complexes et prépondérants de compétition pour les sites de sorption dans les sols et de synergie pour la toxicité, processus largement négligés dans les études classiques mono-polluants, qui ne sont que rarement représentatives de la réalité du terrain. Ainsi, ces phénomènes induisent des modifications importantes du comportement global de ces composés en termes de mobilité (cinétiques de transfert de masse), d'impact et de dégradabilité, rendant également leur prédiction très délicate car nécessitant la prise en compte des phénomènes de synergie et de compétition précités. La réactivité des micropolluants avec une des fractions les plus réactives des sols, la biomasse vivante, a également été étudiée au travers de trois modèles bactériens contrastés (Cupriavidus metallidurans CH34, Escherichia coli, Pseudomonas putida) par une approche combinée de spectroscopie X et de chimie de solution. Ainsi nous avons contribué à la validation d'un modèle universel de réactivité de surface bactérienne aux micropolluants, notamment métalliques, basé sur la prise en compte de groupements réactifs déjà connus, phosphoesters, carboxyles, ou nouvellement identifiés, sulfhydriles, par une approche d'absorption X et de modélisation thermodynamique. Ce modèle reste toutefois peu satisfaisant pour les structures biologiques complexes telles que les biofilms, qui présentent une réactivité largement sous-estimée en raison de la mise en jeu de substances polymériques extracellulaires (EPS) complexes, particulièrement abondantes dans ces structures. Ce volet constitue une de mes principales perspectives de recherche. Dans la seconde partie de ce mémoire, des approches en conditions statiques et dynamiques et mono et multi-pollutions ont permis d'évaluer la biodégradabilité et la biotransformation de contaminants traces en sols naturels. Leur impact sur le compartiment microbien a été évalué par des méthodes d'écotoxicologie classique (bio-indicateurs, marqueurs microbiologiques globaux) et par des méthodes plus innovantes (biocapteurs, biodiversité) permettant la mise en évidence du contrôle de la toxicité des contaminants par leur biodisponibilité, elle-même largement contrôlée par leur spéciation chimique, leur réactivité et leur diffusion au contact des cellules bactériennes (accessibilité). Ces études ont contribué à montrer le rôle important (prépondérant sous certaines conditions) des microorganismes dans la rétention et dans le transport des micropolluants dans les sols, phénomènes qui ont longtemps été négligés et restent encore aujourd'hui difficiles à évaluer in situ. Cela a constitué la dernière partie de ce travail qui présente une approche de dynamique des systèmes en colonnes de sols, permettant d'identifier et modéliser les conditions biogéochimiques impliquées dans le transfert réactif des polluants dans la zone non saturée des sols. Nous avons ainsi caractérisé les principaux facteurs biotiques et abiotiques contrôlant la mobilité des polluants et des bactéries dans les sols et développé une modélisation intégrant ces facteurs dominants. En plus d'être rapidement mobilisées dans les sols, certaines cellules bactériennes peuvent, sous certaines conditions, accélérer fortement le transport de polluants, comme nous avons pu le montrer avec le pentachlorophénol ou avec le Zn, le Cd ou le Cu et le prédire par une modélisation couplée hydrodynamique et géochimique. L'approche pluridisciplinaire et multi-échelle (moléculaire à macroscopique) développée dans ces travaux, fournit des connaissances nouvelles (i) pour la compréhension des cycles biogéochimiques des micropolluants dans les sols, et (ii) pour l'évaluation des risques liés à ces pollutions (notamment les multi-pollutions) et le développement de techniques de bioremédiation de sols et d'eaux contaminés. Mots clefs : Micropolluants, biotransformations, spéciation, écotoxicité, biodisponibilité, accessibilité, réactivité de surface, transfert réactif, bioremédiation, couplages, modélisation.
8

Ingénierie de bactéries magnétotactiques pour la bioremédiation du cobalt

Abbe, Jean-Baptiste 07 March 2017 (has links)
Les bactéries magnétotactiques (MTB) sont des organismes capables de synthétiser des cristaux magnétiques au sein d’un organite particulier, le magnétosome. L’assemblage de ces magnétosomes leur confère des propriétés d’aimantation et d’orientation dans les champs magnétiques. Dans le contexte de l’essor des biotechnologies, nous avons procédé à la fonctionnalisation des MTB pour des applications de bioremédiation du cobalt.Nous avons ainsi développé des vecteurs adaptés aux MTB pour l’expression de machineries enzymatiques de Staphylococcus aureus et Pseudomonas aeruginosa permettant la production de métallophores analogues à la nicotianamine. Nous avons observé un phénotype double, d’augmentation de la résistance aux métaux et d’augmentation de l’accumulation du cobalt que ce soit chez Escherichia coli ou les MTB Magnetospirillum magneticum AMB-1 et Magnetospirillum gryphiswaldense MSR-1. Nous avons également observé que l’expression de systèmes d’import des métaux tel que la NiCoT perméase NxiA de Rhodopseudomonas palustris dans des souches exprimant les analogues de la nicotianamine permet d’accroître encore l’accumulation des métaux.De plus, nous avons montré que la production de ces analogues permet un enrichissement en cobalt des magnétosomes, mais ne conduit pas à de modification de la spéciation de ce métal chez les MTB.Nous proposons donc ici l’utilisation des MTB comme châssis cellulaire pour de nouvelles applications biotechnologiques. / Magnetotactic bacteria (MTB) are organisms able to synthesize magnetic crystals within a specific organelle, the magnetosome. The assembly of these magnetosomes gives them magnetization and orientation properties in magnetic fields. In the context of the development of biotechnology, we have performed the functionalization of MTBs for cobalt bioremediation applications.We have thus developed vectors suitable for MTB for the expression of enzymatic machineries of Staphylococcus aureus and Pseudomonas aeruginosa allowing the production of metallophores analogous to nicotianamine. We observed a double phenotype, increased resistance toward metals and increased cobalt accumulation in Escherichia coli or MTBs Magnetospirillum magneticum AMB-1 and Magnetospirillum gryphiswaldense MSR-1. We have also observed that the expression of metal import systems such as Rhodopseudomonas palustris NiCoT permease NxiA in strains expressing nicotianamine analogs further increases the accumulation of metals.Moreover, we have shown that the production of these analogs allows a cobalt enrichment of the magnetosomes, but does not lead to a modification of the speciation of this metal in MTB.We introduce here the use of MTBs as cellular chassis for new biotechnological applications.
9

Nouveaux procédés de bioremédiation pour le traitement des sols et des sédiments sélénifères / Novel bioremediation processes for treatment of seleniferous soils and sediment

Wadgaonkar, Shrutika 18 December 2017 (has links)
L'objectif de cette thèse a été de développer une technologie pour l'assainissement des sols / sédiments sélénifères et d’étudier la réduction microbienne des oxy-anions de sélénium dans différentes conditions de respiration et de configurations du bioréacteur.Le sol sélénifère prélevé, dans les terres agricoles cultivées de blé au Pendjab (Inde), a été caractérisé et son lavage a été optimisé en faisant varier les paramètres tels que le temps de réaction, la température, le pH et le rapport liquide / solide. Afin de maximiser l'élimination et la récupération du sélénium à partir de ce sol, l'effet des ions compétiteurs et les composés oxydants comme les agents d'extraction pour le lavage du sol, ont également été étudiés. Bien que les agents oxydants aient montré une efficacité maximale d'élimination du sélénium (39%), la présence d'agents oxydants dans le lixiviat et le sol agricole peut augmenter le coût de leur post-traitement. Les plantes aquatiques, Lemma minor et Egeria densa ont été utilisées pour étudier la phyto-remédiation du lixiviat du sol contenant des agents oxydants. Cependant, l'efficacité d'élimination du sélénium par les plantes aquatiques a été significativement affectée par les fortes concentrations de ces agents oxydants dans le lixiviat du sol.Le rinçage du sol sélénifère a révélé un motif de migration du sélénium à travers la colonne du sol. La migration de la fraction de sélénium soluble de la couche supérieure vers la couche inférieure et sa réduction et son accumulation subséquentes dans les couches inférieures de la colonne de sol, ont été observées pendant le rinçage du sol. L'efficacité d'élimination du sélénium par la méthode de rinçage du sol a diminué avec une augmentation de la hauteur de la colonne. De plus, le lixiviat contenant des oxy-anions de sélénium obtenus à partir du lavage du sol, a été traité dans un réacteur UASB en faisant varier l'alimentation organique. Des effluents contenant moins de 5 μg de sélénium L-1 ont été obtenus, ce qui est conforme aux normes de l'USEPA pour la limite de rejet de sélénium dans les eaux usées.De plus, la bio-remédiation ex situ des oxy-anions de sélénium a été étudiée dans des conditions variables. Une bactérie aérobie (Delftia lacustris) capable de transformer le sélénate et le sélénite en sélénium élémentaire, mais aussi en composés d'ester de sélénium solubles jusque-là inconnus, a été isolée et caractérisée de manière fortuite. Alternativement, la bio-réduction anaérobie du sélénate couplé au méthane en tant que donneur d'électrons, a été étudiée dans des bouteilles de sérum et un filtre percolateur en utilisant des sédiments marins comme inoculum. Enfin, l'effet de la contamination d'autres oxy-anions chalcogènes, en plus du sélénium, a été étudié. La réduction simultanée de la sélénite et de la tellurite par un consortium microbien mixte ainsi que la rétention des nanostructures de Se et de Te biogènes dans l'EPS, ont été réalisées durant une opération de 120 jours dans un bioréacteur UASB / The aim of this Ph.D. was to develop a technology for the remediation of seleniferous soils/sediments and to explore microbial reduction of selenium oxyanions under different respiration conditions and bioreactor configurations.Seleniferous soil collected from the wheat-grown agricultural land in Punjab (India) was characterized and its soil washing was optimized by varying parameters such as reaction time, temperature, pH and liquid to solid ratio. In order to maximize selenium removal and recovery from this soil, effect of competing ions and oxidizing agents as chemical extractants for soil washing were also studied. Although oxidizing agents showed a maximum selenium removal efficiency (39%), the presence of oxidizing agents in the leachate and the agricultural soil may increase the cost of their post-treatment. Aquatic plants, Lemma minor and Egeria densa were used to study phytoremediation of the soil leachate containing oxidizing agents. However, the selenium removal efficiency by aquatic weeds was significantly affected by the high concentrations of these oxidizing agents in the soil leachate.Seleniferous soil flushing revealed the selenium migration pattern across the soil column. Migration of soluble selenium fraction from the upper to the lower layers and its subsequent reduction and accumulation in the lower layers of the soil column was observed during soil flushing. The selenium removal efficiency by the soil flushing method decreased with an increase in the column height. Furthermore, the soil leachate containing selenium oxyanions obtained from soil washing was treated in a UASB reactor by varying the organic feed. Effluent containing less than 5 μg L-1 selenium was achieved, which is in accordance with the USEPA guidelines for selenium wastewater discharge limit.Moreover, ex situ bioremediation of selenium oxyanions was studied under variable conditions. An aerobic bacterium (Delftia lacustris) capable of transforming selenate and selenite to elemental selenium, but also to hitherto unknown soluble selenium ester compounds was serendipitously isolated and characterized. Alternatively, anaerobic bioreduction of selenate coupled to methane as electron donor was investigated in serum bottles and a biotrickling filter using marine sediment as inoculum. Finally, the effect of contamination of other chalcogen oxyanions in addition to selenium was studied. Simultaneous reduction of selenite and tellurite by a mixed microbial consortium along with the retention of biogenic Se and Te nanostructures in the EPS was achieved during a 120-day UASB bioreactor operation
10

Structural and biochemical characterization of the irganomercurial Lyase MerB

Abdelgawwad, Haytham Mohamed Gamaleldin Wahba 06 1900 (has links)
Le mercure est présent dans l'environnement à cause de phénomènes naturels (volcans) ou des activités humaines (combustion de combustibles fossiles). Le mercure existe sous forme de mercure élémentaire (Hg0), ionique (HgII) ou organique tel le méthylmercure (MeHg). Ces diverses formes sont en flux constant les uns avec les autres dans le cycle biogéochimique naturel. De par leur grande hydrophobicité et leur capacité à pénétrer les membranes biologiques, les composés organomercuriels contituent la forme la plus toxique de mercure retrouvée dans l’environnement Des niveaux élevés de MeHg ont d’ailleurs été détectés dans la chaire de poissons de nombreuses régions du monde. Conséquemment, une consommation de produits de la mer contaminés représente un grave danger pour la santé humaine. Certaines bactéries isolées à partir d'environnements contaminés par le mercure ont évolué vers un système qui leur permet de convertir efficacement les composés mercuriels présents autant sous forme ionique qu’organique en un mercure élémentaire moins toxique. Cette résistance au mercure s’explique par l'acquisition d'un élément génétique connu sous le nom d’opéron mer. L’opéron mer code entre autre pour deux enzymes importants : la lyase organomercurielle MerB et la réductase mercurielle MerA. MerA catalyse la réduction du HgII conduisant à la formation du mercure élémentaire Hg0 qui est un composé volatile et moins toxique. MerB, quant à elle, catalyse la protonolyse de la liaison carbone-mercure de composés organomercuriels pour produire un composé réduit de carbone et du mercure ionique (HgII). Au vu des effets des organomercuriels et de la réduction de HgII, MerA et MerB sont considérés comme des enzymes clés pouvant servir à la biorestauration des cours d'eau contaminés par les organomercuriels. Une compréhension claire des détails mécanistiques de la façon dont MerA et MerB fonctionnent ensemble au niveau atomique est donc cruciale dans la mise en œuvre de biotechnologies implicant l’opéron mer dans les efforts de bioremédiation. Dans cette étude, nous avons utilisé la résonance magnétique nucléaire (RMN)et la cristallographie aux rayons X pour caractériser la structure et le mécanisme enzymatique de MerB de E. coli. Sur la base d’études structurales précédentes de MerB de E. coli, trois résidus (Cys96, Asp99 et Cys159) ont été identifiés comme constituant la triade catalytique nécessaire au clivage de la liaison carbone-Hg. En guise de suivi aux études antérieures, mon projet consiste d’abord à utiliser la cristallographie aux rayons X afin de définir les rôles de Cys96, Asp99 et Cys159 dans la liaison du substrat et dans le clivage. Deux approches ont été mises en œuvre pour atteindre cet objectif. Tout d'abord, les mutants MerB ont été testés pour définir le rôle des résidus catalytiques. Deuxièmement, les inhibiteurs de MerB et d'autres substrats non organicomercuriels potentiels ont été utilisés pour explorer le site actif de MerB. Une sérine se retrouve à la position de Asp99 dans quatre variants de MerB répertoriés chez les bactéries. Pour mieux comprendre le rôle de Asp99, nous avons comparé la sérine présente dans le variants MerB de Bacillus megaterium (MerB2) et introduit un variant D99S à la protéine MerB du type sauvage d’E. coli (MerB D99S). Nous avons pu constater que la forme purifiée de MerB D99S se caractérisait par une couleur rose après avoir visualisé sa structure cristalline aux rayons X, révélant la présence d'un métal lié au niveau de son site actif. Les analyses par spectrométrie de masse à plasma à couplage inductif (ICP-MS) et par fluorescence des rayons X indiquèrent que MerB D99S se liait au cuivre au niveau du site actif. En outre, les analyses par résonance paramagnétique électronique (EPR) et des études de RMN ont identifié la forme CuII du cuivre. L'addition de substrats organomercuriels a pu déplacer le CuII entrainant ainsi une diminution de l’activité catalytique de MerB D99S. En revanche, MerB2 n'a pu être co-purifié avec le cuivre, bien que la structure aux rayons X du complexe MerB2-Hg soit pratiquement identique à la structure du complexe MerB D99S-Hg. Ceci suggère que le résidu Asp99 est essentiel au clivage des liaisons carbone-Hg de composés organiques du mercure et dirige la spécificité de la liaison au métal. De plus, la liaison cuivre-MerB D99S propose un lien possible entre l'évolution de MerB et son homologue structural, la protéine NosL. Dans la seconde approche, nous nous sommes intéressés au site actif de MerB en testant sa liaison à des composés organostanniques et à des composés organoplombiques avec un inhibiteur de MerB connu sous le nom de triéthylétain (TET) qui se lie au résidu Asp99 sans s’associer aux cystéines du site actif. Une liaison similaire a été observée avec un autre inhibiteur à savoir le triméthylplomb (TML). Quant au diméthylétain (DMT), il inhibe MerB à l'aide d'un mécanisme alternatif en se liant d'abord à Asp99 puis à Cys96 conduisant à un changement critique dans le site actif perturbant ainsi l’interaction π-cation entre Trp95 et Arg155. D’autres inhibiteurs comme le diéthylétain (DET) et le diéthylplomb (DEL) ont été caractérisés comme étant un substrat de MerB où les deux groupes éthyle ont été clivés pour donner les produits ioniques SnIV PbIV qui se lient au site actif de manière similaire à HgII. DMT, DET et DEL présentent une affinité pour la liaison à MerB supérieure à celle de son substrat initial MeHg. Ces résultats suggèrent que les composés organomercuriels ne sont pas les seuls substrats pour MerB et Asp99 est le premier résidu à se lier aux composés organométalliques suivis de la liaison à Cys96 et Cys159. Ces observations suggèrent un agrandissement de l’éventail d'applications possibles pour MerB dans la bioremédiation de certains sites contaminés par des composés organométalliques tels les organoplombiques et organostanniques. Mot-clé: Organomercuriallyase, Merb, organoplombiques. Organostanniques, protéine de liaison cuivre, carbone liaison métallique clivage, méthylmercure, Organomercuriels, biorestauration, résonance magnétique nucléaire, la cristallographie aux rayons X. / Mercury is introduced into the environment from either natural occurrences (volcanoes) or from human activities (combustion of fossil fuels). Mercury exists as elemental mercury (Hg0), ionic mercury (HgII) or organic mercury like methylmercury (MeHg) and these forms are in constant flux with each other as part of the natural biogeochemical cycle. Organomercurial compounds like MeHg are the most toxic form because of their hydrophobicity and their ability to efficiently permeate membranes and bioaccumulate in organisms. High levels of MeHg have been found in fish in many areas around the world, and therefore human consumption of contaminated seafood represents a serious danger for human health. Bacteria isolated from mercury-contaminated environments have evolved a system that allows them to efficiently convert both ionic and organic mercury compounds to the less toxic elemental mercury. The mercury resistance is due to the acquisition of a transferable genetic element known as the mer operon. The mer operon encodes for several proteins including two enzymes, the organomercurial lyase MerB and the mercuric ion reductase MerA. MerB catalyzes the protonolysis of the carbon-mercury bond of organomercurial compounds to produce a reduced-carbon compound and inorganic ionic mercury HgII. MerA catalyzes the reduction of HgII to elemental mercury Hg0, which is volatile and less toxic. Due to their ability to cleave MeHg and reduce the resulting HgII product, MerB and MerA are considered crucial to bioremediation efforts to clean up MeHg from contaminated waterways. A clear understanding of the mechanistic details of how MerB and MerA function together at the atomic level is crucial for appropriate utilization of the mer system in bioremediation efforts. We have been using nuclear magnetic resonance (NMR) spectroscopy and X-ray crystallography to structurally and mechanistically characterize E. coli MerB. Based on previous structural studies of E. coli MerB, three residues (Cys96, Asp99 and Cys159) have been identified as a catalytic triad which is required for carbon-Hg bond cleavage. As a follow up to the earlier studies, my project involves using X-ray crystallography to define the roles of Cys96, Asp99 and Cys159 in substrate binding and cleavage. Two different approaches were implemented to fulfill this goal. Firstly, MerB mutants were tested to define the role for the catalytic residues. Secondly, MerB inhibitors and other potential non-organomercurial substrates were used to probe MerB active site. The Cys,-Asp-Cys catalytic triad found in E.coli MerB is conserved in all MerB variants except four variants where aspartic acid is replaced by a serine. To understand the role of Asp99, we compared a serine-containing MerB variant (Bacillus megaterium MerB2) and an E. coli MerB mutant (MerB D99S) to wild type E. coli MerB. Interestingly, the purified MerB D99S protein was found to contain a pink color. X-ray crystal structure indicated the presence of a bound metal in the active site of MerB D99S. Analysis by inductively coupled plasma mass spectrometry (ICP-MS) and X-ray fluorescence indicated that MerB D99S binds copper in the active site. Further, electron paramagnetic resonance (EPR) and NMR studies identified the copper as CuII. Addition of organomercurial substrate displaces bound CuII but MerB D99S shows diminished catalytic activity. In contrast, MerB2 did not co-purify with copper although the X-ray structure of MerB2-Hg complex is virtually identical to the structure of the MerB D99S-Hg. This suggests that the aspartic acid residue is crucial for the cleavage of carbon-Hg bonds of organomercurials as well as metal-binding specificity. Furthermore, the binding of copper to the MerB D99S protein suggests a possible evolutionary link between MerB and its structural homolog, the copper-binding protein NosL. In the second approach, we probed the active site of MerB through testing its binding to organotin and organolead compounds. The known MerB inhibitor triethyltin (TET) binds to Asp99 without binding to any of the active site cysteines. A similar binding has been observed with trimethylead (TML). Dimethyltin (DMT) inhibits MerB using an alternative mechanism. It first binds to Asp99 then Cys96, which induces a dramatic change in the active site by disrupting a cation-π interaction between Try95 and Arg155. In contrast, diethyltin (DET) and diethylead (DEL) were found to be substrates for MerB, where both ethyl groups were cleaved and the SnIV and PbIV products bound to the active site in a similar manner to HgII. DMT, DET and DEL show higher binding affinity to MerB than its initial substrate MeHg. These results suggest that organomercurials may not be the only substrates for MerB and Asp99 is the first residue to bind to organometals followed by subsequent binding to Cys96 and Cys159. In addition, these observations suggest that there are other possible applications for employing MerB in bioremediation of organolead and organotin contaminated sites while other organometals may have implications when using MerB in bioremediation systems. Keyword: Organomercuriallyase, MerB, Organolead. Organotin, Copper binding protein, Carbon metal bond cleavage, Methylmercury, Organomercuriels, Bioremédiation, Nuclear magnetic resonance, X ray crystallography.

Page generated in 0.0724 seconds