• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Impact des contaminants des sables résiduels de l'industrie pétrolière albertaine sur Frankia SP. et sa symbiose avec l'aulne

Mallet, Pierre-Luc January 2009 (has links)
Frankia est une bactérie filamenteuse du sol capable d'établir une symbiose racinaire, analogue à celle de Rhizobium et des légumineuses, avec plus de 200 espèces d'angiospermes. Cette symbiose actinorhizienne fournit de 70 à 100 % de l'azote requis par la plante. Les aulnes sont des plantes actinorhiziennes reconnues pour leur habilité à coloniser des sols pauvres en azote affectés par des processus naturels ou par l'action des humains. En Alberta, on retrouve de grandes réserves de pétrole sous forme de sable bitumineux qui nécessitent l'excavation du sol pour leur extraction. L'exploitation des sables bitumineux en Alberta a perturbé à ce jour une superficie de plus de 420 km2. Il est estimé que la superficie d'exploitation totale est de 15 000 km2. Un des défis majeurs de cette industrie est de gérer la toxicité des sables résiduels, les sables issus du processus de purification du bitume, qui sont alcalins, salins et contiennent des acides naphténiques. Dans cet ouvrage, on a identifié deux souches (AvcI1 et ACN14a) de Frankia sp. étant aptes, au niveau de leur tolérance aux sables résiduels, à une utilisation dans une technologie de biorémédiation. Basé sur un modèle de revégétalisation par la régénération de la litière du sol, nos résultats suggèrent l'utilisation préférentielle de l'aulne rugueux comparativement à l'aulne crispé. Nos résultats démontrent que Frankia spp. est plus tolérant que son hôte, l'aulne, face aux stress exercés par les sables résiduels. Il a été observé que le NaC1 semble être l'agent le plus stressant des sables résiduels sur la symbiose aulne-Frankia sp. souche ACN14a. On a démontré que Frankia sp. souche ACN14a tolère les acides naphténiques et est capable de proliférer en leur présence. De plus, elle module son expression protéique entre autres en surexprimant des protéines impliquées dans le métabolisme des acides gras en présence de ces acides naphténiques, suggérant une modification de la composition et structure de sa membrane. Finalement, une bonne sélection du microsymbiote et plus particulièrement de l'hôte, l'aulne, combinée à une caractérisation de la performance de la symbiose en conditions contrôlées est une approche qui permettra d'établir une technique de biorémédiation optimisée pour un contexte spécifique comme celui des sols bitumineux de l'Alberta.
2

Encapsulation de Dehalococcoides: avantage pour la déhalogénation des solvants chlorés en sites contaminés

Fournier St-Laurent, Samuel 01 1900 (has links)
Le tétrachloroéthène (PCE) et les éthènes chlorés qui lui sont apparentés ont été abondamment utilisés pour plusieurs applications en industrie dès le début du 20e siècle. Ils sont cependant comptés parmi les polluants les plus communs des sols et de l’eau et beaucoup d’efforts sont déployés afin de les éliminer. Nous croyons que la conversion des éthènes chlorés en éthènes par des microorganismes est une solution prometteuse. Le premier aspect du projet visait donc à établir les conditions pour lesquelles un consortium enrichi en Dehalococcoides ethenogenes permettrait la conversion complète de PCE en éthène. Les expériences réalisées nous ont permis de souligner le rôle de l’acide lactique ajouté aux cultures comme source de carbone et source indirecte d’électrons pour la déhalorespiration. Nous avons également pu établir l’effet de la concentration initiale de biomasse dans les cultures sur le profil de déhalogénation du PCE. Le deuxième aspect du projet visait à développer un protocole d’encapsulation du consortium dans une matrice polymérique afin de profiter des nombreux avantages potentiels de l’encapsulation. Nous avons testé trois montages d’encapsulation différents : atomisation avec jet d’air, atomisation avec vibrations ultrasoniques et « drop-wise ». Le dernier montage prévoyait l’encapsulation des cultures dans des billes d’alginate enrobées de chitosane gélifié par du lignosulfonate. C’est le seul montage qui nous a permis d’encapsuler le consortium de façon efficace sans effet significatifs négatifs sur son activité de déchlorination. Aussi, la comparaison des profils de déhalogénation du PCE de cellules encapsulées et cellules libres a montré une plus faible accumulation de TCE, 1,2-DCE et VC dans les échantillons de cellules encapsulée et, par conséquent, une conversion plus rapide et plus complète du PCE en éthène. Finalement, nous avons observé une tendance favorable à l’idée que les microorganismes encapsulés bénéficient d’un effet de protection contre de faibles concentrations d’oxygène. / Tetrachloroethylene (PCE) and other chlorinated ethenes have been used for industrial purposes since the beginnning of 20th century. However, they are now considered common pollutants of soil and water. A lot of efforts are directed toward elimination of these compounds and we believe degradation of these chlorinated ethenes by microorganisms is the best solution. The first step of this project was to establish a complete conversion of PCE to its non-toxic product ethylene using an enriched consortium of Dehalococcoides ethenogenes. Our results show the importance of lactic acid as a carbon source and indirect source of electrons in a reaction known as dehalorespiration. We have been able to establish the effect of initial biomass on the biodegradation profile of PCE. The second step of the project was to obtain a working protocol for encapsulation of the consortium in a polymeric matrix. Such immobilization procedure would then allows numerous possible advantages as shown in the literature. We tested three encapsulation setups: air atomization, ultrasonic atomization and drop-wise technique. In the last setup, we successfully encapsulated the bacterial consortium into particles made of an alginate core surrounded by a chitosan layer. Thus the drop-wise technique allowed encapsulation of the consortium without negative effects on its dechlorination activity. In addition, the dechlorination profiles of encapsulated cells showed a lower accumulation of chlorinated intermediates TCE, 1,2-DCE and VC which yield a more rapid and complete conversion of PCE to ethylene. Finally, our results support the idea that encapsulated microorganisms may benefit from a protective effect when oxygen is present in the medium.
3

Encapsulation de Dehalococcoides: avantage pour la déhalogénation des solvants chlorés en sites contaminés

Fournier St-Laurent, Samuel 01 1900 (has links)
Le tétrachloroéthène (PCE) et les éthènes chlorés qui lui sont apparentés ont été abondamment utilisés pour plusieurs applications en industrie dès le début du 20e siècle. Ils sont cependant comptés parmi les polluants les plus communs des sols et de l’eau et beaucoup d’efforts sont déployés afin de les éliminer. Nous croyons que la conversion des éthènes chlorés en éthènes par des microorganismes est une solution prometteuse. Le premier aspect du projet visait donc à établir les conditions pour lesquelles un consortium enrichi en Dehalococcoides ethenogenes permettrait la conversion complète de PCE en éthène. Les expériences réalisées nous ont permis de souligner le rôle de l’acide lactique ajouté aux cultures comme source de carbone et source indirecte d’électrons pour la déhalorespiration. Nous avons également pu établir l’effet de la concentration initiale de biomasse dans les cultures sur le profil de déhalogénation du PCE. Le deuxième aspect du projet visait à développer un protocole d’encapsulation du consortium dans une matrice polymérique afin de profiter des nombreux avantages potentiels de l’encapsulation. Nous avons testé trois montages d’encapsulation différents : atomisation avec jet d’air, atomisation avec vibrations ultrasoniques et « drop-wise ». Le dernier montage prévoyait l’encapsulation des cultures dans des billes d’alginate enrobées de chitosane gélifié par du lignosulfonate. C’est le seul montage qui nous a permis d’encapsuler le consortium de façon efficace sans effet significatifs négatifs sur son activité de déchlorination. Aussi, la comparaison des profils de déhalogénation du PCE de cellules encapsulées et cellules libres a montré une plus faible accumulation de TCE, 1,2-DCE et VC dans les échantillons de cellules encapsulée et, par conséquent, une conversion plus rapide et plus complète du PCE en éthène. Finalement, nous avons observé une tendance favorable à l’idée que les microorganismes encapsulés bénéficient d’un effet de protection contre de faibles concentrations d’oxygène. / Tetrachloroethylene (PCE) and other chlorinated ethenes have been used for industrial purposes since the beginnning of 20th century. However, they are now considered common pollutants of soil and water. A lot of efforts are directed toward elimination of these compounds and we believe degradation of these chlorinated ethenes by microorganisms is the best solution. The first step of this project was to establish a complete conversion of PCE to its non-toxic product ethylene using an enriched consortium of Dehalococcoides ethenogenes. Our results show the importance of lactic acid as a carbon source and indirect source of electrons in a reaction known as dehalorespiration. We have been able to establish the effect of initial biomass on the biodegradation profile of PCE. The second step of the project was to obtain a working protocol for encapsulation of the consortium in a polymeric matrix. Such immobilization procedure would then allows numerous possible advantages as shown in the literature. We tested three encapsulation setups: air atomization, ultrasonic atomization and drop-wise technique. In the last setup, we successfully encapsulated the bacterial consortium into particles made of an alginate core surrounded by a chitosan layer. Thus the drop-wise technique allowed encapsulation of the consortium without negative effects on its dechlorination activity. In addition, the dechlorination profiles of encapsulated cells showed a lower accumulation of chlorinated intermediates TCE, 1,2-DCE and VC which yield a more rapid and complete conversion of PCE to ethylene. Finally, our results support the idea that encapsulated microorganisms may benefit from a protective effect when oxygen is present in the medium.
4

Etude de l'élimination de substances aromatiques dangereuses dans un procédé couplant adsorption et biodégradation

Lesage, Geoffroy 08 December 2009 (has links) (PDF)
La présence de micropolluants à l'entrée des opérations d'épuration d'effluents industriels induit des problèmes au cours du traitement par des procédés biologiques, certaines molécules n'étant pas nécessairement disponibles à la biodégradation. Parmi les molécules présentes dans les rejets d'origine pétrochimique ou chimique, les substances prioritaires les moins volatiles sont aussi les plus hydrophobes (ex : Hydrocarbures Aromatiques Polycycliques) et ont tendance à s'adsorber majoritairement sur les matières organiques et les boues. A l'inverse, les molécules moins hydrophobes mais très volatiles comme les Benzène, Toluène, Ethylbenzène et p-Xylène ont une forte propension à être transférées dans l'atmosphère lors des phases d'aération. Le bioréacteur hybride étudié ici, reposant sur l'addition de supports adsorbants dans des procédés à boues activées, présente de nombreux avantages. D'une part l'addition de charbon actif en grain dans des procédés à boues activées permet de fixer les polluants ciblés, minimiser leur volatilisation et augmenter leur temps de séjour dans le procédé D'autre part, la réduction de leur concentration à un niveau non inhibiteur permet l'absorption des variations de charges qui sont fréquentes dans les effluents industriels. Enfin les supports ajoutés, sur lesquels se développent des biofilms, constituent des niches écologiques nouvelles pour les micro-organismes les plus lents à se développer. Ces derniers peuvent dégrader les molécules adsorbées dans les zones biorégénérables du charbon actif. Afin de caractériser les mécanismes physicochimiques et biologiques, des expériences en batch des phénomènes découplés et couplés ont été réalisées : cinétiques et isothermes d'adsorption et de biosorption, cinétiques de volatilisation et respirométrie. Egalement, deux pilotes à l'échelle laboratoire ont permis de suivre les performances épuratoires d'un bioréacteur séquencé conventionnel et d'un bioréacteur hybride à support adsorbant. Un modèle d'adsorption sur support hétérogène, développé sous Matlab® et un modèle intégrant le couplage des phénomènes en dynamique, développé sous Aquasim® ont été combinés. Le modèle global développé permet de simuler de façon dynamique le devenir des micropolluants (les outils précédents ne fonctionnant qu'en régime permanent). Les simulations réalisées concordent avec les résultats expérimentaux et permettent de conclure que les mécanismes d'élimination abiotiques jouent un rôle très important dans les « performances épuratoires » du procédé de traitement biologique aérobie conventionnel. Les transferts de BTEX de la phase liquide vers le compartiment gazeux sont significatifs (>99% en 2 heures) et les quantités d'HAPs détectées dans la fraction solide sont importantes (élimination moyenne >65% lors de la décantation primaire). Pour les Composés Organiques Volatiles (ex : BTEX), l'ajout de particules adsorbantes et l'analyse des modes opérationnels minimisant le transfert dans la phase gaz sont les points prépondérants. Des simulations prospectives mettant en jeu les phénomènes conjoints de biodégradation et d'adsorption du toluène et du naphthalène ont permis de montrer que le réseau méso-macroporeux est régénérable, que l'adsorption a lieu majoritairement dans ce compartiment et que le taux de biorégénération dépend de la quantité de biomasse maintenue. L'efficacité des bioréacteurs à supports adsorbants (Charbon Actif en Grain) a été démontré pour ces molécules, à conditions de gérer une période de biorégénération qui devra être optimisée à partir du modèle développé.

Page generated in 0.0679 seconds