• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 299
  • 99
  • 39
  • 24
  • 17
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • Tagged with
  • 593
  • 100
  • 74
  • 71
  • 60
  • 59
  • 52
  • 49
  • 48
  • 43
  • 39
  • 31
  • 30
  • 28
  • 27
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

The microorganism control of raw water disinfected by chlorine in processes of water treatment and distribution systems of treated drinking water

Chiang, Yao-ching 18 January 2010 (has links)
In the process of traditional water treatment, the humic acid and fulvic acid can be oxidized by chlorination; besides, it also produces small molecular organic compounds at the same time. Coagulation, flocculation, and sedimentation can reduce the concentration of the Assimilable Organic Carbon (AOC) significantly. An example of Ping-Ding water treatment plant was performed with sampling twelve times monthly from December 2008 to November 2009, the strong influence of chlorine, and coagulation, flocculation on the AOC can be observed. Comparing to the removal efficiency of water process in Ping-Ding water treatment plant, the AOC presented much stably in the distribution systems. We observed the data on the mean concentration of monthly sampling related to the operation unit in the water treatment plant. The Total Organic Carbon (TOC), and the Dissolved Organic Carbon (DOC) had the same trend with AOC in the water treatment process; it showed that TOC, and DOC had well relation to AOC in Ping-Ding water treatment plant. However, scrutinizing single monthly sampling, we found that the concentration of AOC did not fix out with the concentration of TOC and DOC at the same time. Therefore, results indicate that the AOC is mainly related to the smaller organic molecules of the TOC. In the series of sampling, we divided the influence of climate factor into the dry season and the pour season. The research discussed the five analysis items in the final results and discussion¡GTOC, DOC, UV254, UV254/DOC, and AOC. Basically, the concentration of the five analysis items on the pour season is higher than the dry season; it indicates that the raw water¡¦s concentration of organic carbon in Ping-Ding water treatment plant is higher during raining days. This can express the high concentration of the UV254, UV254/DOC, and AOC in water treatment plant in our work.
202

Organic chlorine in soilwater : Influence of Clear-cuttning and Nitrogen

Fredriksson, Maria January 2007 (has links)
<p>Chlorine is one of most common element on earth and it is essential in every living organism, but can also cause problems in the environment. Chlorine can exist both as inorganic (Clin) and organically bound (Clorg). Earlier was the common opinion that Clorg only occurs from anthropogenic sources, but the last years, research has shown that chlorine is a part of the biogeochemical cycle and Clorg also can have natural sources. Many chlorinated substances are poisonous, so the fact that they have a natural source created attention. Fertilizations with nitrogen in forest areas have shown unexpected consequences, such as an increase leakage of nitrogen to ground and surface water. Clear-cutting is a disturbance on the ecosystem and the environment is sensitive for disturbances. Because of the fact that both chlorine and fertilization can be environmental problems and that clear-cutting is a big disturbance in the nature, this study will investigate if there are changes of organic chlorine (Clorg) in soil water after clear-cutting and if fertilization with nitrogen has any influence on the concentration of Clorg. This study was made in a forest area in Värmland, Sweden (Hagfors). Chemical analyses were made in the laboratory though measuring AOX (absorbable organic halogens). The result of this study showed that clear-cutting probably has some effect on the Clorg concentration and that nitrogen doesn’t have any influence.</p>
203

A computer simulation of polar sunrise ozone depletion in the planetary boundary layer

Tang, Apollo Teck Choon. January 2000 (has links)
Thesis (M. Sc)--York University, 2000. Graduate Programme in Physics and Astronomy. / Typescript. Includes bibliographical references (leaves 128-135). Also available on the Internet. MODE OF ACCESS via web browser by entering the following URL: http://wwwlib.umi.com/cr/yorku/fullcit?pMQ59206.
204

Computational investigations of the dynamics of chlorine dioxide /

Stedl, Todd Robert. January 2003 (has links)
Thesis (Ph. D.)--University of Washington, 2003. / Vita. Includes bibliographical references (leaves 115-124).
205

Studies on the chemistry of chlorine dioxide

Brown, Richard W., January 1951 (has links) (PDF)
Thesis (Ph. D.)--Institute of Paper Chemistry, 1951. / Includes bibliographical references (leaves 106-109).
206

The oxidation of methyl-[beta]-glucoside and cellulose with an aqueous chlorine system

Henderson, John Thomas, January 1957 (has links) (PDF)
Thesis (Ph. D.)--Institute of Paper Chemistry, 1957. / Includes bibliographical references (leaves 37-38).
207

The oxidation of simple organic compounds with aqueous chlorine dioxide solutions

Somsen, Roger A., January 1958 (has links) (PDF)
Thesis (Ph. D.)--Institute of Paper Chemistry, 1958. / Bibliography: leaves 43-44.
208

Optimization of an Advanced Water Treatment Plant: Bromate Control and Biofiltration Improvement

Bales, Dustin William 01 January 2012 (has links)
The David L. Tippin Water Treatment Facility (DLTWTF) serving the city of Tampa, Florida is an advanced drinking water treatment facility consisting of coagulation/flocculation, ozonation, granular activated carbon biofiltration, and disinfection by chloramine. New regulations and the recent economic crisis pushed the facility to investigate methods to decrease costs and meet regulatory requirements easier. The two major issues identified as priorities for investigation were the optimization of the biofiltration system and the use of a novel process to reduce the formation of bromate during ozonation. Optimization of the biofiltration system is needed to remove more of the assorted particles that cause biofilms, nitrification in the distribution system, and high chloramine demand. Previous work improved the removal of particles that cause biofilms and nitrification, but was not able address the removal of particles that cause high chloramine demand to a satisfactory degree. Possible factors affecting this high chloramine decay were identified and evaluated at the pilot scale, including filter depth, chloramination of filter backwash water, media material, and nutrient addition. Non-chlorinated backwash water reduced chloramine demand by approximately 30% for GAC filters, and by approximately 50% for anthracite. Generally, anthracite performed slightly worse than GAC. Nutrient addition showed no effect. Filter depth improved chloramine decay, but not significantly enough to warrant the increased material required Bromate control is necessary to prevent the formation of bromate, a regulated carcinogen. Traditional bromate control methods use pH depression. While effective, at the DLTWTF, this forces the increased use of more expensive caustic soda over lime for raising the pH of process water. A novel process known as the chlorine-ammonia process was investigated at the bench scale to identify the ideal ratio of chlorine and ammonia to decrease the formation of bromate to ensure regulatory compliance and allow greater use of lime to decrease costs. The best ratio in this study is 0.45 mg/L NH3 to 0.75 mg/L Cl2 which produced 1.09 ppb bromate at a CT of 6.8 min*mg/L, representing a 84% improvement over the control.
209

Investigating sources of stream chloride near Kejimkujik National Park, southwestern Nova Scotia: A chlorine stable isotope approach

Bachiu, Timothy 08 September 2010 (has links)
Chlorine stable isotope analysis (?37Cl ) means of stream water (- 0.95 ‰, n = 22), rainwater (- 1.51 ‰, n = 12), fog water (- 1.08 ‰, n = 7) and silicate mineral bound chloride (+ 0.13 ‰, n = 3) are used in an isotope mass balance approach to estimate sources of stream chloride. During summer-baseflow conditions, the chloride budget of two catchments in southwestern Nova Scotia is approximately 39 % from rainfall, 37 % from fog water and 24 % from rock/water interactions. The results of a significant source of geological chloride suggest the use of chloride in stream water as a proxy for marine derived sulphate may not be valid. This conclusion implies that anthropogenic sources of sulphate to acid sensitive ecosystems of southwestern Nova Scotia have been underestimated when chloride is assumed to be a conservative ion in the hydrological cycle.
210

Effect of chlorine on the melting of the subcratonic lithospheric mantle

Chu, Linglin Unknown Date
No description available.

Page generated in 0.0554 seconds