• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 97
  • 56
  • 13
  • 11
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 255
  • 60
  • 59
  • 41
  • 37
  • 37
  • 35
  • 32
  • 28
  • 24
  • 23
  • 23
  • 20
  • 19
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Innervation of cholinergic interneurons in the striatum of the rat

Sizemore, Rachel J, n/a January 2009 (has links)
Cholinergic interneurons are relatively rare neurons in the rat striatum. These sparsely distributed neurons display a synchronous pause in their tonic firing pattern during reward-related learning. It has been hypothesised that a specialised fast-conducting crossed-corticostriatal pathway is involved in synchronising the pause in tonic firing of these interneurons. This study aimed to detail the innervation of cholinergic interneurons by mapping their proximal and distal inputs and to describe the innervation of the crossed-corticostriatal pathway in male Wistar rats. In vivo electrophysiological recording methods were used to label single crossed-corticostriatal neurons but inadequately labeled their axons. Thus, an anterograde neuronal tracing study was conducted. Biotinylated dextran amine (BDA; 1.2 [mu]l) was pressure-injected into the left cerebral hemisphere. Six days later, the rat was perfused-fixed and the brain sectioned. BDA-labelled axons were traced to both the ipsilateral and contralateral striata. Cholinergic interneurons in the right striatum were double-immunolabelled using an optimised protocol including a polyclonal rabbit anti-m2-muscarinic receptor antibody and a monoclonal goat anti-choline acetyltransferase antibody. All sections were processed for transmission electron microscopy. Serial ultrathin sections were montaged and distal (from non BDA-labelled tissue) and proximal synapses were each mapped separately. A reconstructed distal dendrite from a cholinergic interneuron, located 225 [mu]m from the soma, was analysed. It had an average width of 1 .25[mu]m and 0.726 synapses per [mu]m. This was compared to dendrites in the same tissue and from BDA-labelled tissue. Two dendrites were presumed to be distal profiles of either cholinergic or somatostatin interneurons, while the third was thought to belong to another interneuronal cell type. In terms of surface area, there were less somal synapses compared to those made onto the distal dendrite of the cholinergic interneuron. Somal synapse counts were similar to those reported previously from our laboratory, where symmetric synapses were most common. Crossed-corticostriatal BDA-labelled axons were found to course across proximal dendrites and somas of immunolabelled cholinergic interneurons. Varicosities from these axons were found in close proximity to proximal dendrites and somas of cholinergic interneurons. Of all cholinergic interneurons in an adjacent section, 77% showed closely associated proximal varicosities. Of these, 76% of varicosities were associated with the soma, 11% to proximal dendrites and 13% to both locations. Twenty-nine BDA-labeled axons were analysed using transmission electron microscopy. Most were observed making asymmetric synaptic contact with unlabelled spines. In two cases spines were traced to medium spiny projection neurons. Two axon segments were seen touching the proximal regions of separate cholinergic interneurons. At these contact sites interrupted membrane thickenings were observed. It is proposed here that synapses may form at these sites during reward-related learning. However labelling of the contact sites with a postsynaptic marker would be necessary to confirm their synaptic nature. The current study has gathered information about the distal and proximal innervation patterns of these neurons and described the termination pattern of the crossed-corticostriatal pathway in relation to these neurons for the first time. These findings support the crossed-corticostriatal pathway as one possible anatomical substrate for synchronising the pause response on both sides of the brain.
42

Modeling disturbances of cholinergic systems : possible relevance for schizophrenia /

Mattsson, Anna, January 2005 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2005. / Härtill 6 uppsatser.
43

Immediate early gene expression in the mesopontine tegmentum and midbrain after acute or chronic nicotine administration /

Porter, Ailsa. January 2008 (has links)
Thesis (Ph.D.) - University of St Andrews, April 2008.
44

Astrocytes regulate cortical ACh release via kynurenic acid implications for cognitive impairments in schizophrenia /

Zmarowski, Amy L. January 2008 (has links)
Thesis (Ph. D.)--Ohio State University, 2008. / Title from first page of PDF file. Includes bibliographical references (p. 116-138).
45

Molecular determinants of picrotoxin inhibition

Erkkila, Brian E. January 2007 (has links) (PDF)
Thesis (Ph. D.)--University of Alabama at Birmingham, 2007. / Title from first page of PDF file (viewed Oct. 13, 2008). Includes bibliographical references.
46

Agonist-dependent regulation of muscarinic acetylcholine receptor expression and function /

Schlador, Michael Lee, January 2000 (has links)
Thesis (Ph. D.)--University of Washington, 2000. / Vita. Includes bibliographical references (leaves 149-170).
47

Hippocampal CA1 cytoarchitecture and behaviour after combined neonatal cholinergic lesion and environmental enrichment in rats /

Frčhette, Myln̈e, January 1900 (has links)
Thesis (M.Sc.) - Carleton University, 2007. / Includes bibliographical references (p. 78-87). Also available in electronic format on the Internet.
48

Purinergic and cholinergic influences on hypoglossal motoneuron excitability /

Ireland, Matthew F. January 2004 (has links) (PDF)
Thesis (Ph.D.) - University of Queensland, 2005. / Includes bibliography.
49

Nucleus basalis cholinergic lesions and defense responses

Knox, Dayan, January 2005 (has links)
Thesis (Ph. D.)--Ohio State University, 2005. / Title from first page of PDF file. Document formatted into pages; contains xii, 103 p.; also includes graphics (some col.). Includes bibliographical references (p. 90-103). Available online via OhioLINK's ETD Center
50

Selective lesion of cholinergic neurons of the septal hippocampal tract memory and learning /

Fitz, Nicholas Francis. January 2009 (has links)
Thesis (Ph.D.)--Duquesne University, 2009. / Title from document title page. Abstract included in electronic submission form. Includes bibliographical references (p. 123-151) and index.

Page generated in 0.0403 seconds