• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 2
  • 1
  • 1
  • Tagged with
  • 31
  • 31
  • 8
  • 6
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Cocaine- and Amphetamine-Regulated Transcript-Immunoreactivity in the Rat Sympatho-Adrenal Axis

Dun, N. J., Dun, S. L., Kwok, E. H., Yang, J., Chang, J. K. 07 April 2000 (has links)
Distribution of cocaine- and amphetamine-regulated transcript-like immunoreactivity (CART-LI) was studied in the rat spinal cord, sympathetic ganglia and adrenal glands by immunohistochemical methods, utilizing a polyclonal antiserum raised against the CART peptide fragment 55-102. CART-LI was detected in nerve fibers and in basket-like terminals surrounding many postganglionic neurons of the superior cervical ganglion (SCG), stellate, paravertebral and prevertebral ganglia. Postganglionic neurons exhibited low or non-detectable levels of CART-LI. Surgical sectioning of the cervical sympathetic trunk for 6-7 days resulted in a nearly complete loss of CART-LI fibers and terminals in the SCG. In the adrenal gland, CART-LI nerve fibers formed a plexus underneath the capsule, some of which bifurcated and made a sharp turn toward the adrenal medulla, where clusters of chromaffin cells were intensely labeled. The detection of CART-LI in sympathetic ganglia and adrenal glands extends the previous observation of the presence of CART-LI in sympathetic preganglionic neurons and further supports the notion that CART peptide(s) may function as a signaling molecule in the sympatho-adrenal axis.
22

Expression of multiple populations of nicotinic acetylcholine receptors in bovine adrenal chromaffin cells

Wenger, Bryan William January 2003 (has links)
No description available.
23

Munc18 function in large dense-core vesicle exocytosis / Munc18 function in large dense-core vesicle exocytosis

Gulyas-Kovacs, Attila 26 January 2005 (has links)
No description available.
24

Contribution à l'étude du rôle physiologique du canal de fuite sodique NALCN dans les cellules excitables : approche sur cellules chromaffines de souris / Does the sodium leak channel NALCN contribute to the neuroendocrine function of the mouse adrenal chromaffin cells?

Milman, Alexandre 20 November 2018 (has links)
Les cellules chromaffines des glandes surrénales sont des cellules neuroendocrines excitables impliquées dans la sécrétion de catécholamines. En réponse à un stress, ces hormones, parmi les premières à être libérées exercent de multiples actions sur leurs organes-cibles, contribuant à la réponse adaptive de l'organisme. Ainsi, élucider la physiopathologie du stress est un enjeu de santé publique et mieux connaître les mécanismes permettant au tissu médullosurrénalien d'optimiser la sécrétion de catécholamines aux besoins de l'organisme est un défi à relever.La sécrétion des catécholamines est liée à l'activité électrique des cellules chromaffines et élucider les mécanismes cellulaires qui en contrôlent l'excitabilité est d'intérêt. L'activité électrique de ces cellules est régulée par le nerf splanchnique ainsi que par des conductances ioniques intrinsèques. Dans ce contexte, les conductances opérant autour du potentiel de repos jouent un rôle majeur dans le déclenchement des potentiels d'action. C'est en particulier le cas du canal NALCN (sodium leak channel), récemment décrit comme régulant le potentiel de repos des neurones. C'est pourquoi nous avons orienté nos travaux vers la caractérisation du rôle de NALCN dans l'excitabilité des cellules chromaffines, dans des tranches de glandes surrénales de souris. L'enregistrement du potentiel de membrane révèle qu'environ 62% des cellules chromaffines présentent des potentiels d'action spontanés et que le profil de décharge suit un mode régulier ou un mode en bouffées. Des enregistrements plus longs révèlent qu'une même cellule présente alternativement ces 2 modes de décharge. Un changement de potentiel de quelques mV autour du potentiel de repos favorise un mode, indiquant que les courants ioniques actifs autour du potentiel de repos sont des composantes cruciales de l'excitabilité cellulaire. NALCN est-il un de ces courants?Pour commencer, nous avons observé, par hybridation in situ, la présence du transcrit codant NALCN dans les cellules chromaffines chez la souris (coll Dr. Ventéo, INM, Montpellier). Nous avons alors cherché à déterminer si NALCN est impliqué dans l'activité électrique des cellules chromaffines. Nous avons utilisé un protocole de diminution de la concentration extracellulaire de Na+, classiquement utilisé pour l'étude électrophysiologique de NALCN. La diminution du Na+ extracellulaire induit une hyperpolarisation et un arrêt des potentiels d'action. Cet effet n'est pas bloqué par la TTX. En potentiel imposé, la diminution du Na+ réduit le courant de maintien, elle n'est ni bloquée par la TTX ni par le Cs+. La courbe courant/potentiel du courant sensible à la réduction du Na+ révèle un courant linéaire entre -130 et -50 mV et un potentiel d'inversion en accord avec la contribution de plusieurs espèces ioniques. Ce courant présente une perméabilité majeure au Na+ vs K+. Ainsi, ces résultats décrivent une conductance ionique partageant des propriétés biophysiques et pharmacologiques similaires à celles de NALCN.Afin de poursuivre dans cette direction, nous avons initié des travaux ambitieux visant à éteindre l'expression du gène codant NALCN dans les cellules chromaffines, au travers d'une stratégie d'injection de virus in vivo. Une construction codant pour un shRNA dirigé contre NALCN, a été injectée dans la glande surrénale gauche. Les résultats sont très encourageants, montrant i) la présence, dans les glandes injectées, de cellules chromaffines transduites et ii) une diminution significative de l'expression de NALCN dans les glandes injectées avec le ShRNA-anti NALCN. Cette approche de transduction virale mérite d'être poursuivie.En conclusion, et même si les résultats actuels ne permettent pas d'affirmer avec certitude que NALCN contribue à l'excitabilité des cellules chromaffines, ce travail de thèse apporte néanmoins une contribution majeure à l'étude de l'excitabilité de ces cellules et ouvre des perspectives attractives quant au rôle de NALCN. / Adrenal chromaffin cells are excitable neuroendocrine cells involved in the secretion of catecholamines. Once delivered into the blood circulation, these hormones exert multiple actions, leading to physiological adjustments enabling the organism to cope with stress. Deciphering the physiology/pathology of stress is a major public health issue, especially in the field of the mechanisms that lead to optimal catecholamine secretion.The electrical activity of chromaffin cells critically shapes the catecholamine secretory pattern. Elucidating the mechanisms regulating the firing discharge is therefore of interest. In situ, chromaffin cell excitability is regulated by both the splanchnic nerve inputs and the intrinsic ion conductances expressed in cells. Regarding this, the conductances operating near the resting membrane potential are crucial in the cell competence to spontaneously fire. In particular, the background current flowing through the sodium leak channel NALCN has been recently reported to tune the resting potential of neuronal cells. This finding prompted us to investigate the possible contribution of NALCN to chromaffin cell excitability in mouse acute adrenal slices. The first part of my thesis was aimed at investigating chromaffin cell electrical firing pattern. Whole-cell recordings indicate that about 62% of mouse chromaffin cell spontaneously fire and exhibit two discharge patterns, a regular firing mode and a bursting mode. Long-lasting recordings of spontaneous electrical activity reveal that the two firing modes can occur in the same cells. When the membrane potential is challenged around the resting value, the firing pattern alternate between the two modes, indicating that currents operating around the resting membrane potential are key components in regulating cell excitability. Is NALN one of these currents?To answer this question, we first unveiled, by in situ hybridization, the presence of the transcript encoding NALCN in mouse chromaffin cells (coll with Dr. Ventéo, INM, Montpellier). Second, we performed electrophysiological experiments using protocols and pharmacological agents commonly used to study NALCN currents. Decreasing external NaCl leads to a robust membrane hyperpolarization, abrogating action potentials. This effect is not blocked by TTX. In voltage-clamp conditions, external Na+ reduction leads to a decrease in the holding current. This effect is not blocked by Cs+. Depolarizing voltage ramps unveil that the current blocked by lowering external Na+ blocks is linear between -130 and -50 mV, and displays a reversal potential arguing for a non-selective conductance. The ionic permeability is dominant for Na+ over K+. Collectively, our results describe a voltage-independent and non-selective cationic conductance operating near the resting potential of mouse chromaffin cells. Its electrophysiological and pharmacological properties recapitulate two NALCN attributes.In the third part, we developed an ambitious approach aiming at silencing NALCN expression specifically in chromaffin cells in vivo. Viral vectors encoding anti-NALCN shRNA under the control of the tyrosine hydroxylase promoter, as well as appropriate positive and negative viral constructs, were injected in the left gland. As promising results, transduced cells were detected in the injected glands only and a significant decrease in NALCN expression was observed in glands injected with the anti-NALCN shRNA. As such, the data collected from in vivo manipulation of NALCN expression are encouraging and this approach deserves to be pursued.This thesis describes a Na+-sensitive current operating near the resting membrane potential of mouse chromaffin cells, sharing biophysical and pharmacological properties with NALCN. Even though further experiments are needed to ascertain that NALCN supports this conductance, our work contributes to a better knowledge of chromaffin cell excitability.
25

Role of Munc13 Isoforms in Regulating Large Dense Core Vesicle Exocytosis in Chromaffin Cells

Man, Kwun Nok Mimi 30 April 2014 (has links)
No description available.
26

Role of Internal Calcium Stores in Exocytosis and Neurotransmission: A Dissertation

Lefkowitz, Jason J. 11 May 2010 (has links)
A central concept in the physiology of neurosecretion is that a rise in cytosolic [Ca2+] in the vicinity of plasmalemmal Ca2+ channels due to Ca2+ influx, elicits exocytosis. This dissertation examines the effect on both spontaneous and elicited exocytosis of a rise in focal cytosolic [Ca2+] in the vicinity of ryanodine receptors (RYRs) due to release from internal stores in the form of Ca2+ syntillas. Ca2+ syntillas are focal cytosolic transients mediated by RYRs, which we first found in hypothalamic magnocellular neuronal terminals. (Scintilla, Latin for spark, found in nerve terminals, normally synaptic structures.) We have also observed Ca2+ syntillas in mouse adrenal chromaffin cells (ACCs). Here the effect of Ca2+syntillas on exocytosis is examined in ACCs, which are widely used as model cells for the study of neurosecretion. Elicited exocytosis employs two sources of Ca2+, one due to influx from the cell exterior through voltage-gated Ca2+ channels (VGCCs) and another due to release from intracellular stores. To eliminate complications arising from Ca2+ influx, the first part of this dissertation examines spontaneous exocytosis where influx is not activated. We report that decreasing syntillas leads to an increase in spontaneous exocytosis measured amperometrically. Two independent lines of experimentation each lead to this conclusion. In one case release from stores was blocked by ryanodine; in another, stores were partially emptied using thapsigargin plus caffeine after which syntillas were decreased. We conclude that Ca2+syntillas act to inhibit spontaneous exocytosis, and we propose a simple model to account quantitatively for this action of syntillas. The second part of this dissertation examines the role of syntillas in elicited exocytosis whereby Ca2+ influx is activated by physiologically relevant levels of stimulation. Catecholamine and neuropeptide release from ACCs into the circulation is controlled by the sympathetic division of the Autonomic Nervous System. To ensure proper homeostasis tightly controlled exocytic mechanisms must exist both in resting conditions, where minimal output is desirable and under stress, where maximal, but not total release is necessary. It is thought that sympathetic discharge accomplishes this task by regulating the frequency of Ca2+ influx through VGCCs, which serves as a direct trigger for exocytosis. But our studies on spontaneous release in ACCs revealed the presence of Ca2+ syntillas, which had the opposite effect of inhibiting release. Therefore, assuming Ca2+-induced Ca2+ release (CICR) via RYRs due to Ca2+ influx through VGCCs, we are confronted with a contradiction. Sympathetic discharge should increase syntilla frequency and that in turn should decreaseexocytosis, a paradox. A simple “explanation” might be that the increase in syntillas would act as a brake to prevent an overly great exocytic release. But upon investigation of this question a different finding emerged. We examined the role of syntillas under varying levels of physiologic stimulation in ACCs using simulated action potentials (sAPs) designed to mimic native input at frequencies associated with stress, 15 Hz, and the basal sympathetic tone, 0.5 Hz. Surprisingly, we found that sAPs delivered at 15 Hz or 0.5 Hz were able to completely abolish Ca2+ syntillas within a time frame of two minutes. This was not expected. Further, a single sAP is all that was necessary to initiate suppression of syntillas. Syntillas remained inhibited after 0.5 Hz stimulation but were only temporarily suppressed (for 2 minutes) by 15 Hz stimulation, where global [Ca2+]i was raised to 1 – 2 μM. Thus we propose that CICR, if present in these cells, is overridden by other processes. Hence it appears that inhibition of syntillas by action potentials in ACCs is due to a new process which is the opposite of CICR. This process needs to be investigated, and that will be one of the very next steps in the future. Finally we conclude that syntilla suppression by action potentials is part of the mechanism for elicited exocytosis, resolving the paradox. In the last chapter speculation is discussed into the mechanisms by which physiologic input in the form of an action potential can inhibit Ca2+ syntillas and furthermore, how the Ca2+ syntilla can inhibit exocytic output.
27

Sécrétion hormonale dans les cellules chromaffines saines et tumorales : régulation par les GTPases Rho / Hormone secretion in healthy and tumoral chromaffin cells : regulation by RhoGTPases

Houy, Sébastien 26 June 2014 (has links)
Les cellules neuroendocrines sécrètent hormones et neuropeptides dans la circulation sanguine par un processus d’exocytose régulée par le calcium. Engendrant un apport de membrane important à la surface cellulaire, l'exocytose doit être suivie par un processus d’endocytose compensatrice afin de maintenir l’homéostasie cellulaire et assurer le recyclage des composés vésiculaires. La connaissance précise des mécanismes moléculaires qui régulent la sécrétion neuroendocrine est primordiale. En effet, de nombreux cancers neuroendocrines sont associés à un dysfonctionnement de la sécrétion hormonale. Bien que connus des cliniciens, les mécanismes cellulaires et moléculaires qui induisent de telles perturbations de sécrétion restent à ce jour inexplorés. Les travaux réalisés au laboratoire démontrent que la sécrétion hormonale dans les cellules neuroendocrines est contrôlée par RhoA, Rac1 et Cdc42, trois GTPases de la famille Rho. Néanmoins, les voies moléculaires contrôlant le cycle d’activation-inactivation de ces GTPases Rho lors de l’exocytose sont peu connues. Mon projet de thèse s’est articulé autour de deux axes principaux. Un premier objectif fut d’étudier, au cours de la sécrétion neuroendocrine, l’implication potentielle de l’oligophrénine-1, une protéine GAP capable d'inactiver certaines GTPases Rho. En utilisant les cellules chromaffines de la glande surrénale comme modèle cellulaire, j'ai découvert un double rôle de la protéine oligophrénine-1. En effet, en inactivant RhoA, l’oligophrénine-1 permettrait la mise en place du pore de fusion nécessaire à l'exocytose tandis que par le biais de son domaine BAR, elle contrôle l'endocytose compensatrice. Mon second objectif fut d’appréhender les bases cellulaires et moléculaires à l’origine du dysfonctionnement de la sécrétion dans les cancers neuroendocrines en utilisant les phéochromocytomes humains comme modèle expérimental. En combinant des analyses ampérométriques et protéomiques sur des tumeurs humaines, j'ai pu montrer que l'hypersécrétion catécholaminergique des phéochromocytomes est bien la conséquence d’une augmentation de l’activité sécrétrice. J'ai également pu identifier des acteurs protéiques, dont plusieurs modulateurs des GTPases de type Rho, qui pourraient être impliqués dans ces défauts de sécrétion. L’ensemble de mon projet de thèse m’a permis de mieux comprendre les mécanismes de régulation des GTPases Rho au cours de la sécrétion mais également de proposer les premières bases moléculaires et cellulaires abordant les perturbations de la sécrétion dans les tumeurs neuroendocrines. / Neuroendocrine cells release hormones and neuropeptides in the bloodstream through a calcium regulated exocytosis process. This process leads to an important increase of membrane at the cell surface which needs to be compensated through endocytosis in order to maintain cell homeostasis as well as the recycling of vesicular compounds. Many neuroendocrine cancers have been associated with a dysfunction in hormone secretion, urging toward a need to understand the molecular mechanisms which regulate neuroendocrine secretion. Even though these perturbations are known at a clinical level, the underlying cellular and molecular mechanism remains to be unraveled. Previous works in the team demonstrate that hormone secretion is regulated by RhoA, Rac1 and Cdc42, which are all GTPases of the Rho family. Nevertheless the molecular pathways which control the activation and inactivation cycle of these RhoGTPases during exocytosis remain unknown. My PhD project covered essentially two aspects. My first goal was to characterize the potential role of oligophrenin-1, a GAP protein which can inactivate Rho-GTPases, in neuroendocrine secretion. By using adrenal gland chromaffin cells as a cellular model, I have discovered a dual role for oligophrenin-1. Indeed, through RhoA inactivation, oligophrenin-1 allows the set up of a fusion pore, which is necessary for exocytosis, while controlling through the BAR domain the compensatory endocytosis. My second goal was to characterize the molecular and cellular basis which leads to a secretion dysfunction in neuroendocrine cancers by using human pheochromocytomas as an experimental model. By combining amperometric and proteomic analyses on human tumors, I was able to demonstrate that pheochromocytoma catecholaminergic secretion was indeed due to an increase in secretion activity. I could also identify major actors, including several Rho GTPase modulators, which could be implied in these secretion defects. All together, these approaches gave me a better understanding of RhoGTPase regulation during secretion but also an insight into the molecular and cellular basis of impaired secretion in neuroendocrine tumors.
28

Mechanisms of O2-Chemosensitivity in Adrenal Medullary Chromaffin Cells from the Developing Rat and Mouse / Mechanisms of O2-Chemosensitivity in Developing Chromaffin Cells

Thompson, Roger J. 06 1900 (has links)
The mammalian adrenal gland (or suprarenal gland) is a small organ located on the superior aspect of the kidney. The central region of the gland, the medulla, consists of chromaffin cells, which release catecholamines into the blood during periods of stress. This is best known as the 'fight or flight' response and is regulated, in the adult animal, by neuronal signals from the cholinergic sympathetic fibres of the splanchnic nerve. Interestingly, in some mammals, such as rat and human, sympathetic innervation is immature at birth, yet the chromaffin cells can still secrete catecholamines in response to physiological stessors, e.g. hypoxia. Increased plasma catecholamines is thought to provide a vital protective role for the neonatal animal during, and following birth. This is mediated in part by promoting lung fluid absorption, surfactant secretion, heart rate stabilization, and brown fat mobilization. The observation that, in the neonate, catecholamines are secreted in the absence of functional sympathetic innervation suggests that the chromaffin cells possess other mechanisms for directly 'sensing' a fall in blood O2 tension (hypoxia). The primary goal of this thesis was to uncover the mechanisms of oxygen-sensing in developing chromaffin cells from the rat and mouse, using primary short-term cell cultures of chromaffin cells. The experimental approaches relied on patch clamp techniques to record ionic currents and membrane potential, carbon fibre electrochemistry to record catecholamine secretion from cell clusters, and fluorescent indicators to measure reactive oxygen species generation. Hypoxic chemosensitivity was found in embryonic and neonatal, but not juvenile chromaffin cells from both the rat and mouse. Exposure to hypoxia or anoxia caused a reversible suppression of whole-cell current, which was comprised of the differential modulation of three K+ currents: (1) suppression of a large-conductance Ca2+-dependent K+ current; (2) suppression of a delayed rectifier K+ current; and (3) activation of an ATP-sensitive K+ current. Hypoxia also induced membrane depolarization that was not initiated by any of these three voltage-dependent K+ currents. Additionally, hypoxia broadened action potentials in chromaffin cells that showed spontaneous activity, and this was mediated by a prolongation of the time course of membrane repolarization. All of these factors likely contribute to catecholamine secretion by enhancing the influx of Ca2+ through depolarization-activated L-type Ca2+ channels. Two sets of experiments were designed to identify the oxygen sensor in neonatal chromaffin cells. First, cells from transgenic mice, deficient in the gp91^phox component of the putative O2-sensor protein, NADPH oxidase, responded to hypoxia in the same way as wild type cell, indicating that NADPH oxidase is not primarily responsible for oxygen sensitivity in these cells. Second, inhibitors of the proximal electron transport chain (e.g. rotenone and antimycin A) mimicked and attenuated the hypoxic response, while inhibitors of the distal electron transport chain (cyanide) and uncouplers of oxidative phosphorylation (2,4-dinitrophenol) had no effect. Furthermore, reactive oxygen species production, primarily H2O2, decreased during exposure to hypoxia or inhibitors of the proximal electron transport chain, revealing a potential mitochondrial mechanism for 'sensing' of the hypoxic stimulus. Reduced oxygen availability to the electron transport chain is proposed to cause a fall in cellular reactive oxygen species (ROS), principally H2O2. This fall in ROS signals closure of Ca2+-dependent and Ca2+-independent K+ channels, which causes broadening action potentials and increases Ca2+ influx. The latter is further enhanced by the hypoxia-induced membrane depolarization, which in turn increases the probability of cell firing. The rise in intracellular Ca2+ then acts as the signal for catecholamine release from the chromaffin cells. / Thesis / Doctor of Philosophy (PhD)
29

Análise da expressão de isoformas de proteína quinase C em células cromafins da medula adrenal de ratos Wistar diabéticos tratados e não tratados com insulina

Pinheiro, Liliane Sena 25 June 2008 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2016-10-17T11:03:10Z No. of bitstreams: 1 lilianesenapinheiro.pdf: 8108520 bytes, checksum: b03200480798ddb2cf88a9276e4c9d8d (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2016-10-22T13:09:54Z (GMT) No. of bitstreams: 1 lilianesenapinheiro.pdf: 8108520 bytes, checksum: b03200480798ddb2cf88a9276e4c9d8d (MD5) / Made available in DSpace on 2016-10-22T13:09:54Z (GMT). No. of bitstreams: 1 lilianesenapinheiro.pdf: 8108520 bytes, checksum: b03200480798ddb2cf88a9276e4c9d8d (MD5) Previous issue date: 2008-06-25 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / O diabetes mellitus (DM) reduz a secreção de catecolaminas (CAs) das células cromafins adrenais, sendo esse um evento patofisiológico crítico por favorecer a ocorrência de episódios de hipoglicemia grave decorrentes do próprio tratamento da doença. Vários trabalhos relatam a participação de proteínas quinase C (PKCs) nas vias de síntese e secreção de CAs nas células cromafins. Os objetivos desse trabalho foram analisar o efeito do DM sobre a expressão das isoformas α, ε e ζ de PKC em células cromafins de ratos e avaliar se o controle glicêmico reverte os efeitos da doença. Foram utilizados ratos Wistar com DM induzido por estreptozotocina. Foram estabelecidos três grupos experimentais, ratos controles (C), diabéticos tratados com salina (DTS) ou com insulina (DTI). As análises foram feitas 15 dias após a indução. Utilizamos as técnicas de imunohistoquímica e Western Blot. A insulinoterapia foi estabelecida após estudos do comportamento alimentar e da variação dos níveis glicêmicos de ratos controles e doentes durante 24h consecutivas. Foi testada a eficácia de diferentes esquemas de tratamento com insulina. O tratamento estabelecido consistiu em injeções de insulina NPH, sendo 1U aplicada às 13h e 4U às 19h. Após os 15 dias de tratamento, o ganho médio de massa corporal dos ratos C (+37±3g) e DTI (+43±3g) foram similares enquanto os DTS emagreceram (-9±6g). A média da glicemia de jejum dos ratos C (74±1mg/dl) e dos DTI (93±6mg/dl) foram similares e dentro dos níveis normais, enquanto que a dos ratos DTS foi elevada (471±23mg/dl). A insulinoterapia restabeleceu os níveis plasmáticos do colesterol total, c-LDL e c-VLDL nos ratos DTI. O DM não alterou os níveis de c-HDL, triglicerídos e frutosamina. As análises da expressão de PKCs mostraram que a PKCα é a mais expressada seguida de ζ e depois de ε. O DM reduziu em 39,5% a expressão da PKCα, enquanto a de ζ foi aumentada em 74,2%. A expressão da PKCε não foi afetada pelo DM. O tratamento com insulina reverteu o efeito do DM sobre a expressão de PKCα, a expressão da PKCε continuou inalterada e a expressão da PKCζ permaneceu elevada (+32,6%) quando comparada aos ratos C. Concluímos que em células cromafins adrenais, o diabetes afeta a expressão de isoformas de PKCs de maneira diferenciada. Trabalhos realizados em nosso laboratório mostraram que o DM reduz o conteúdo total (21,1%), a secreção basal (-24,3%) e a estimulada por carbacol (-28,9%) e K+ (42,2%) de CAs. Como observado para PKCα, a insulinoterapia reverteu o efeito do DM sobre o conteúdo total. Já foi demonstrado que PKCα participa de uma via de sinalização que estimula a atividade de tirosina hidroxilase. Por outro lado, o tratamento não restabeleceu os processos secretórios, sugerindo que PKCζ possa estar envolvida nessa alteração. Há fortes evidências de que PKCζ regula canais de K+ retificadores, o que pode explicar o efeito da doença sobre o processo de secreção via despolarização da membrana. / The diabetes mellitus (DM) reduces the catecholamine (CAs) secretion of adrenal chromaffin cells, a critical pathophysiologic event that promotes the occurrence of serious hypoglycemia episodes, consequence of the disease treatment. Several papers report the participation of protein kinase C (PKC) on catecholamine synthesis signal pathways of adrenal chromaffin cells. The objectives of this work were to study the effect of DM on expression of PKC isoforms α, ε and ζ in rat chromaffin cells and to evaluate if the glicemic control revert the effect of the illness. Male Wistar rats with diabetes induced by streptozotocin were used. Three experimental groups were determined: Control (C), diabetic rats receiving saline solution (DS) and diabetic rats receiving insulin (DI). The analyses were made after 15 days of DM induction. Immunohistochemistry and western blotting techniques were done. The insulin therapy protocol was established after studying the feeding behavior and glycemic level variations during the whole 24h. The information made possible to establish the time of insulin applications. Several schemes of insulin treatments were tested to keep the diabetic rat as close as possible to normoglycemia path. The best results were found by using 1U at 1:00 PM and 4U at 7:00 PM of NPH insulin. After 15 days of treatment the acquired body weight was similar between C and DI rats, 37±3g and 43±3g, respectively. The DS rats emaciated 9±6g. The fasting glycemic levels were 74±1mg/dl, 93±6mg/dl and 471±23mg/dl to C, DI and DS rats, respectively. The insulin therapy reestablishes the plasmic levels of total cholesterol, c-LDL and c-VLDL on DI rats. The DM did not change the levels of c-HDL, triglycerides and frutosamine. The PKCα is the more expressed isoform in adrenal chromaffin cells, followed by ζ and ε. The DM reduced 39,5% the PKCα expression and, unlike, increased 74,2% the expression of PKCζ. The expression of PKCε was not affected by DM. The insulin treatment reverted the effect of DM on PKCα, the expression of PKCε remained unchanged and the expression of PKCζ remained higher than the control group (+32,6%). Studies of our laboratory show that the DM causes reduction on adrenal catecholamine content (21,1%), basal secretion (-24,3%) and catecholamine secretion stimulated by carbachol (-28,9%) and high K+ (-42,2%). The insulin therapy, in like manner as observed on PKCα, reverted the DM effect on adrenal catecholamine content. It was shown that PKCα participates on signal transduction pathway that stimulates the activity of tyrosine hydroxylase. Otherwise, the insulin treatment did not restore the secretory processes, suggesting that PKCζ could be involved in this process. There are strong evidences showing that PKCζ regulates the voltage-dependent delayed rectifier K (Kv) and its expression was not normalized by insulin therapy.
30

Probing modes of vesicle docking in neurosecretory cells with evanescent wave microscopy / Untersuchung zur Vesikel-Andockmodi in neurosecretorischen Zellen mit Totalreflektionsmikroskopie

Kochubey, Olexiy 18 January 2006 (has links)
No description available.

Page generated in 0.0644 seconds