Spelling suggestions: "subject:"chromatin assembly anda disassembly"" "subject:"chromatin assembly anda misassembly""
11 |
Regulation of Cell Growth and Differentiation within the Context of Nuclear Architecture by the Runx2 Transcription Factor: a DissertationYoung, Daniel W 20 September 2005 (has links)
The Runx family of transcription factors performs an essential role in animal development by controlling gene expression programs that mediate cell proliferation, growth and differentiation. The work described in this thesis is concerned with understanding mechanisms by which Runx proteins support this program of gene expression within the architectural context of the mammalian cell nucleus. Multiple aspects of nuclear architecture are influenced by Runx2 proteins including sequence-specific DNA binding at gene regulatory regions, organization of promoter chromatin structure, and higher-order compartmentalization of proteins in nuclear foci. This work provides evidence for several functional activities of Runx2 in relation to architectural parameters of gene. expression for the control of cell growth and differentiation. First, the coordination of SWI/SNF mediated chromatin alterations by Runx2 proteins is found to be a critical component of osteoblast differentiation for skeletal development. Several chromatin modifying enzymes and signaling factors interact with the developmentally essential Runx2 C-terminus. A patent-pending microscopic image analysis strategy invented as part of this thesis work - called intranuclear informatics - has contributed to defining the C-terminal portion of Runx2 as a molecular determinant for the nuclear organization of Runx2 foci and directly links Runx2 function with its organization in the nucleus. Intranuclear informatics also led to the discovery that nuclear organization of Runx2 foci is equivalently restored in progeny cells following mitotic division - a natural perturbation in nuclear structure and function. Additional microscopic studies revealed the sequential and selective reorganization of transcriptional regulators and RNA processing factors during progression of cell division to render progeny cells equivalently competent to support Runx2 mediated gene expression. Molecular studies provide evidence that the Runx proteins have an active role in retaining phenotype by interacting with target gene promoters through sequence-specific DNA binding during cell division to support lineage-specific control of transcriptional programs in progeny cells. Immunolocalization of Runx2 foci on mitotic chromosome spreads revealed several large foci with pairwise symmetry on sister chromatids; these foci co-localize with the RNA polymerase I transcription factor, Upstream Binding Factor (UBFl) at nucleolar organizing regions. A series of experiments were carried out to reveal that Runx2 interacts directly with ribosomal DNA loci in a cell cycle dependent manner; that Runx2 is localized to UBF foci within nucleoli during interphase; that Runx2 attenuates rRNA synthesis; and that this repression of ribosomal gene expression by Runx2 is associated with cell growth inhibition and induction of osteoblast-specific gene expression. This thesis has identified multiple novel mechanisms by which Runx2 proteins function within the hierarchy of nuclear architecture to control cell proliferation, growth and differentiation.
|
12 |
Transcriptional Regulation During Adipocyte Differentiation: A Role for SWI/SNF Chromatin Remodeling Enzymes: A DissertationSalma, Nunciada 02 March 2006 (has links)
Chromatin has a compact organization in which most DNA sequences are structurally inaccessible and functionally inactive. Reconfiguration of thechromatir required to activate transcription. This reconfiguration is achieved by the action of enzymes that covalently modify nucleosomal core histones, and by enzymes that disrupt histone-DNA interactions via ATP hydrolysis.
TheSWI/SNF family of ATP-dependent chromatin remodeling enzymes has been implicated not only in gene activation but also in numerous cellular processes including differentiation, gene repression, cell cycle control, recombination and DNA repair. PPARγ, C/EBPα and C/EBPβ are transcription factors with well established roles in adipogenesis. Ectopical expression of each of these factors in non-adipogenic cells is sufficient to convert them to adipocyte-like cells.
To determine the requirements of SWI/SNF enzymes in adipocyte differentiation, we introduced PPARγ, C/EBPα or C/EBPβ into fibroblasts that inducibly express dominant-negative versions of the Brahma-Related Gene 1 (BRG1) or human Brahma (BRM), which are the ATPase subunits of the SWI/SNF enzymes. We found that adipogenesis and expression of adipocyte genes were inhibited in the presence of mutant SWI/SNF enzymes. Additionally, in cells expressing C/EBPα or C/EBPβ, PPARγ expression was SWI/SNF dependent. These data indicate the importance of these remodeling enzymes in both early and late gene activation events.
Subsequently, we examined by chromatin immunoprecipitation (ChIP) assay the functional role of SWI/SNF enzymes in the activation of PPARγ2, the master regulator of adipogenesis. Temporal analysis of factors binding to the PPARγ2 promoter showed that SWI/SNF enzymes are required to promote preinitiation complex assembly and function.
Additionally, our studies concentrated on the role of C/EBP family members in the activation of early and late genes during adipocyte differentiation. During adipogenesis, C/EBPβ and δ are rapidly and transiently expressed and are involved in the expression of PPARγ and C/EBPα, which together activate the majority of the adipocyte genes. Our studies determined the temporal recruitment of the C/EBP family at the promoters of early and late genes by ChIP assay during adipocyte differentiation. We found that all of the C/EBP members evaluated are present at the promoters of early and late genes, and the binding correlated with the kinetics of the C/EBPs expression. Binding of C/EBPβ and δ is transient, subsequently being replaced by C/EBPα. These studies demonstrated that C/EBPβ and δ are not only involved in the regulation of PPARγ and C/EBPα, but also in the activation of late expressed adipocyte genes.
|
13 |
The Shape of Silence: The Solution-State Conformation of Sir Heterochromatin: A DissertationSwygert, Sarah G. 20 August 2015 (has links)
Heterochromatin is a silenced chromatin region essential for maintaining genomic stability in eukaryotes and for driving developmental processes in higher organisms. A hallmark of heterochromatin is the presence of specialized architectural proteins that alter chromatin structure to inhibit transcription and recombination. Although it is generally assumed that heterochromatin is highly condensed, surprisingly little is known about the structure of heterochromatin or its dynamics in solution. In budding yeast, heterochromatin assembly at telomeres and the HM silent mating type loci requires the Sir proteins: Sir3, believed to be the major structural component of SIR heterochromatin, and the Sir2/4 complex, responsible for SIR recruitment to silencing regions and deacetylation of lysine 16 of the histone H4 tail, a mark associated with active chromatin. A combination of sedimentation velocity, atomic force microscopy, and nucleosomal array capture was used to characterize the stoichiometry and conformation of SIR nucleosomal arrays. The results indicate that Sir3 interacts with nucleosomal arrays with a stoichiometry of two Sir3 monomers per nucleosome, and that Sir2/4 may additionally bind at a ratio of one per nucleosome. Despite Sir3’s ability to repress transcription in vivo and homologous recombination in vitro in the absence of Sir2/4, Sir3 fibers were found to be significantly less compact than canonical magnesium-induced 30 nanometer fibers. However, heterochromatin fibers composed of all three Sir proteins did adopt a more condensed, globular structure. These results suggest that heterochromatic silencing is mediated both by the creation of more stable nucleosomes and by the steric exclusion of external factors.
|
14 |
Recombinational Repair of a Chromosomal DNA Double Strand Break: A DissertationSinha, Manisha 16 March 2009 (has links)
Repairing a chromosomal DNA double strand break is essential for survival and maintenance of genomic integrity of a eukaryotic organism. The eukaryotic cell has therefore evolved intricate mechanisms to counteract all sorts of genomic insults in the context of chromatin structure. Modulating chromatin structure has been crucial and integral in regulating a number of conserved repair processes along with other fundamental genomic processes like replication and transcription.
The work in this dissertation has focused on understanding the role of chromatin remodeling enzymes in the repair of a chromosomal DNA double strand break by homologous recombination. This has been approached by recapitulating the biochemical formation of recombination intermediates on chromatin in vitro. In this study, we have demonstrated that the mere packaging of DNA into nucleosomal structure does not present a barrier for successful capture of homologous DNA sequences, a central step of the biochemical pathway of recombinational repair. It is only the assembly of heterochromatin-like more complex nucleo-protein structure that presents additional constraints to this key step. And, this additional constraint can be overcome by the activities of ATP-dependent chromatin remodeling enzymes. These findings have great implications for our perception of the mechanism of the recombinational repair process of a chromosomal DNA double strand break within the eukaryotic genome.
|
15 |
ATP-Dependent Heterochromatin Remodeling: A DissertationManning, Benjamin J. 11 September 2015 (has links)
Eukaryotic DNA is incorporated into the nucleoprotein structure of chromatin. This structure is essential for the proper storage, maintenance, regulation, and function of the genomes’ constituent genes and genomic sequences. Importantly, cells generate discrete types of chromatin that impart distinct properties on genomic loci; euchromatin is an open and active compartment of the genome, and heterochromatin is a restricted and inactive compartment. Heterochromatin serves many purposes in vivo, from heritably silencing key gene loci during embryonic development, to preventing aberrant DNA repeat recombination. Despite this generally repressive role, the DNA contained within heterochromatin must still be repaired and replicated, creating a need for regulated dynamic access into silent heterochromatin. In this work, we discover and characterize activities that the ATP-dependent chromatin remodeling enzyme SWI/SNF uses to disrupt repressive heterochromatin structure.
First, we find two specific physical interactions between the SWI/SNF core subunit Swi2p and the heterochromatin structural protein Sir3p. We find that disrupting these physical interactions results in a SWI/SNF complex that can hydrolyze ATP and slide nucleosomes like normal, but is defective in its ability to evict Sir3p off of heterochromatin. In vivo, we find that this Sir3p eviction activity is required for proper DNA replication, and for establishment of silent chromatin, but not for SWI/SNF’s traditional roles in transcription. These data establish new roles for ATP-dependent chromatin remodeling in regulating heterochromatin.
Second, we discover that SWI/SNF can disrupt heterochromatin structures that contain all three Sir proteins: Sir2p, Sir3p and Sir4p. This new disruption activity requires nucleosomal contacts that are essential for silent chromatin formation in vivo. We find that SWI/SNF evicts all three heterochromatin proteins off of chromatin. Surprisingly, we also find that the presence of Sir2p and Sir4p on chromatin stimulates SWI/SNF to evict histone proteins H2A and H2B from nucleosomes. Apart from discovering a new potential mechanism of heterochromatin dynamics, these data also establish a new paradigm of chromatin remodeling enzyme regulation by nonhistone proteins present on the substrate.
|
16 |
Dissecting cis and trans Determinants of Nucleosome Positioning: A DissertationHughes, Amanda L. 14 November 2014 (has links)
Eukaryotic DNA is packaged in chromatin, whose repeating subunit, the nucleosome, consists of an octamer of histone proteins wrapped by about 147bp of DNA. This packaging affects the accessibility of DNA and hence any process that occurs on DNA, such as replication, repair, and transcription. An early observation from genome-wide nucleosome mapping in yeast was that genes had a surprisingly characteristic structure, which has motivated studies to understand what determines this architecture. Both sequence and trans acting factors are known to influence chromatin packaging, but the relative contributions of cis and trans determinants of nucleosome positioning is debated. Here we present data using genetic approaches to examine the contributions of cis and trans acting factors on nucleosome positioning in budding yeast.
We developed the use of yeast artificial chromosomes to exploit quantitative differences in the chromatin structures of different yeast species. This allows us to place approximately 150kb of sequence from any species into the S.cerevisiae cellular environment and compare the nucleosome positions on this same sequence in different environments to discover what features are variant and hence regulated by trans acting factors. This method allowed us to conclusively show that the great preponderance of nucleosomes are positioned by trans acting factors. We observe the maintenance of nucleosome depletion over some promoter sequences, but partial fill-in of NDRs in some of the YAC v promoters indicates that even this feature is regulated to varying extents by trans acting factors.
We are able to extend our use of evolutionary divergence in order to search for specific trans regulators whose effects vary between the species. We find that a subset of transcription factors can compete with histones to help generate some NDRs, with clear effects documented in a cbf1 deletion mutant. In addition, we find that Chd1p acts as a potential “molecular ruler” involved in defining the nucleosome repeat length differences between S.cerevisiae and K.lactis. The mechanism of this measurement is unclear as the alteration in activity is partially attributable to the N-terminal portion of the protein, for which there is no structural data. Our observations of a specialized chromatin structure at de novo transcriptional units along with results from nucleosome mapping in the absence of active transcription indicate that transcription plays a role in engineering genic nucleosome architecture. This work strongly supports the role of trans acting factors in setting up a dynamic, regulated chromatin structure that allows for robustness and fine-tuning of gene expression.
|
17 |
A Role for Histone Modification in the Mechanism of Action of Antidepressant and Stimulant Drugs: a DissertationSchroeder, Frederick Albert 28 December 2007 (has links)
Depression and stimulant drug addiction each result in massive losses of health, productivity and human lives every year. Despite decades of research, current treatment regimes for depression are ineffective in approximately half of all patients. Therapy available to stimulant drug addicts is largely ineffective and moreover, dedicated treatments for drug dependence (including abuse of cocaine) are non-existent. Thus, there is a pressing need to further understanding of the molecular mechanisms underlying these disorders in order to develop novel, targeted therapeutic strategies.
Chromatin remodeling, including changes in histone acetylation, has been proposed to play a role in both the etiology and treatment of depression and stimulant abuse. Histone acetyltransferases (HATs) and histone deacetylases (HDACs) regulate numerous cellular processes, including transcription, cell cycle progression and differentiation. Moreover, histone acetylation has been shown to regulate hippocampal neurogenesis, a cellular response associated with the pathogenesis and treatment of depression and stimulant abuse (Hsieh et al., 2004, Yamaguchi et al., 2004, Fischer et al., 2007). Ultimately, such basic cellular processes impact higher order function, namely cognition and emotion.
Indeed, recent studies suggest that HDAC activity in selected forebrain regions, including ventral striatum and hippocampus, modulate stimulant- and antidepressantinduced behavior (Kumar et al., 2005, Tsankova et al., 2006a, Fischer et al., 2007). These reports highlight an association between chromatin remodeling and diverse behavioral changes, including changes induced by the pleiotropic HDAC inhibitor, sodium butyrate (SB), (Kumar et al., 2005, Tsankova et al., 2006a, Fischer et al., 2007). However, behavioral, brain-metabolic and molecular effects of SB treatment in the context of rodent models of depression, dopaminergic sensitization and repeated cocaine administration remained unclear.
The work described in this thesis illustrates the potential for chromatin modifying drugs in mechanisms underlying the experimental pharmacology of depression and stimulant addiction. Specifically, the data presented here support the view that treatment with the short chain fatty acid, sodium butyrate enhances: (1) antidepressant-like behavioral effects of the selective serotonin reuptake inhibitor (SSRI), fluoxetine (2) locomotor sensitization induced by repeated administration of the dopamine D1/D5 receptor agonist SKF82958; and(3) brain metabolic activation upon repeated cocaine administration as evidenced by fMRI in awake rats.
Furthermore, this report provides evidence that these treatment paradigms will result in chromatin modification changes associated with active transcription, in addition to increased mRNA levels of plasticity-associated genes, including brain-derived neurotrophic factor (BDNF) at key brain regions implicated in the pathogenesis of depression and stimulant addiction.
To date, little is known regarding the underlying mechanisms of action mediating the enhancing effects of sodium butyrate on the various antidepressant- and stimulantrelated paradigms. Our findings underscore the potential of chromatin-modifying drugs to profoundly affect the behavioral response of an animal to antidepressant and stimulant drugs and warrants consideration in the context of developing novel therapeutic strategies.
|
18 |
The Role of Janus-Kinase-3 in CD4<sup>+</sup> T Cell Proliferation and Differentiation: A DissertationShi, Min 27 October 2008 (has links)
Jak3, a member of the Janus family of tyrosine kinases, is essential for signaling via the receptors for IL-2, IL-4, IL-7, IL-9, IL-15 and IL-21. These Jak3-dependent cytokines primarily activate STAT5 and are critical for lymphoid generation and differentiation. Using naïve CD4+ T cells from Jak3-deficient mice and wild type CD4+ T cells treated with a pharmacological inhibitor of Jak3, we report that Jak3-dependent cytokine signals are not required for the proliferation of naïve CD4+ T cells. This is illustrated by the similar percentage of divided cells, comparable cell divisions, intact cell cycle progression and unaffected regulation of cell cycle proteins in the absence of Jak3. In contrast to proliferation, differentiation of naïve CD4+ T cells into Th1 effector cells requires Jak3-dependent cytokine signals. In the absence of Jak3, naïve CD4+ T cells proliferate robustly, but produce little IFN-γ after Th1 polarization in vitro. This defect is not due to reduced activation of STAT1 or STAT4, nor to impaired up-regulation of the transcription factor T-bet. Instead, we find that T-bet binding to the Ifng promoter is greatly diminished in the absence of Jak3-dependent signals, correlating with a decrease in Ifng promoter accessibility and histone acetylation. These data indicate that while Jak3-dependent signals are dispensable for naïve CD4+ T cell proliferation, Jak3 regulates epigenetic modification and chromatin remodeling of the Ifng locus during Th1 differentiation.
|
19 |
Chromatin Regulators and DNA Repair: A DissertationBennett, Gwendolyn M. 19 December 2014 (has links)
DNA double-strand break (DSB) repair is essential for maintenance of genome stability. However, the compaction of the eukaryotic genome into chromatin creates an inherent barrier to any DNA-mediated event, such as during DNA repair. This demands that there be mechanisms to modify the chromatin structure and thus access DNA. Recent work has implicated a host of chromatin regulators in the DNA damage response and several functional roles have been defined. Yet the mechanisms that control their recruitment to DNA lesions, and their relationship with concurrent histone modifications, remain unclear. We find that efficient DSB recruitment of many yeast chromatin regulators is cell-cycle dependent. Furthering this, we find recruitment of the INO80, SWR-C, NuA4, SWI/SNF, and RSC enzymes is inhibited by the non-homologous end joining machinery, and that their recruitment is controlled by early steps of homologous recombination. Strikingly, we find no significant role for H2A.X phosphorylation (γH2AX) in the recruitment of chromatin regulators, but rather that their recruitment coincides with reduced levels of γH2AX. We go on to determine the chromatin remodeling enzyme Fun30 functions in histone dynamics surround a DSB, but does not significantly affect γH2AX dynamics. Additionally, we describe a conserved functional interaction among the chromatin remodeling enzyme, SWI/SNF, the NuA4 and Gcn5 histone acetyltransferases, and phosphorylation of histone H2A.X. Specifically, we find that the NuA4 and Gcn5 enzymes are both required for the robust recruitment of SWI/SNF to a DSB, which in turn promotes the phosphorylation of H2A.X.
|
20 |
XIST and CoT-1 Repeat RNAs are Integral Components of a Complex Nuclear Scaffold Required to Maintain SAF-A and Modify Chromosome Architecture: A DissertationKolpa, Heather J. 08 April 2016 (has links)
XIST RNA established the precedent for a noncoding RNA that stably associates with and regulates chromatin, however it remains poorly understood how such RNAs structurally associate with the interphase chromosome territory. I demonstrate that transgenic XIST RNA localizes in cis to an autosome as it does to the inactive X chromosome, hence the RNA recognizes a structure common to all chromosomes. I reassess the prevalent thinking in the field that a single protein, Scaffold Attachment Factor-A (SAF-A/hnRNP U), provides a single molecule bridge required to directly tether the RNA to DNA. In an extensive series of experiments in multiple cell types, I examine the effects of SAF-A depletion or different SAF-A mutations on XIST RNA localization, and I force XIST RNA retention at mitosis to examine the effect on SAF-A. I find that SAF-A is not required to localize XIST RNA but is one of multiple proteins involved, some of which frequently become lost or compromised in cancer. I additionally examine SAF-A’s potential role localizing repeat-rich CoT-1 RNA, a class of abundant RNAs that we show tightly and stably localize to euchromatic interphase chromosome territories, but release upon disruption of the nuclear scaffold. Overall, findings suggest that instead of “tethering” chromosomal RNAs to the scaffold, SAF-A is one component of a multi-component matrix/scaffold supporting interphase nuclear architecture. Results indicate that Cot-1 and XIST RNAs form integral components of this scaffold and are required to maintain the chromosomal association of SAF-A, substantially advancing understanding of how chromatin-associated RNAs contribute to nuclear structure.
|
Page generated in 0.0798 seconds