Spelling suggestions: "subject:"chromatin."" "subject:"ehromatin.""
371 |
Rôle de l'activité méthyltransférase de la protéine PRDM9 dans la recombinaison méiotique chez la souris / Role of PRDM9 methyltransferase activity in mouse meiotic recombinationDiagouraga, Boubou 15 December 2015 (has links)
Chez les organismes à reproduction sexuée, les gamètes (cellules sexuelles) sont produits par un processus comprenant deux divisions successives appelé méiose. Durant la première division, la recombinaison méiotique permet un contact physique et un échange de matériel génétique entre les chromosomes homologues. Elle résulte de la réparation, par recombinaison homologue, de cassures double-brin de l’ADN générées par la protéine SPO11 au début de la prophase de la première division. Chez les mammifères, les évènements de recombinaison se situent dans des régions de 1-2 kb appelées points chauds de recombinaison. La protéine PRDM9, qui contient un domaine PR/SET et des doigts de zinc, détermine la position des points chauds en ciblant des séquences spécifiques d’ADN par ses doigts de zinc. Son domaine PR/SET porte une activité lysine méthyltransférase, corrélée avec un enrichissement de H3K4me3 au niveau des points chauds, dans les spermatocytes.Les objectifs de mon travail étaient de caractériser l’activité catalytique de PRDM9 et d’étudier son rôle dans l’initiation de la recombinaison chez la souris. La structure cristallisée du domaine PR/SET de PRDM9 en complexe avec un peptide de l’histone H3 nous a permis de montrer que ce domaine adopte une structure similaire aux domaines SET canoniques portés par d’autres méthyltransférases, et d’identifier des résidus clés pour son activité. Nous montrons que le domaine PR/SET de PRDM9 méthyle in vitro non seulement H3K4, mais aussi H3K9 et H3K36. Nous confirmons in vivo la triméthylation de H3K36 dépendante de PRDM9 dans les spermatocytes. Utilisant deux allèles différents de PRDM9, Prdm9b et Prdm9wm7, qui activent des points chauds différents grâce à leur spécificité de séquence, nous avons généré des lignées de souris exprimant des allèles mutés du domaine PR/SET dont l’activité catalytique est abolie, Prdm9wm7G278A ou Prdm9wm7Y357F. La protéine mutante PRDM9wm7Y357F se fixe à ses cibles, mais n’y permet in vivo ni la triméthylation de H3K4, ni celle de H3K36. Enfin, nous montrons que l’activité catalytique de PRDM9 est requise pour promouvoir la recombinaison aux points chauds. Chez les souris exprimant uniquement un allèle Prdm9 muté, les spermatocytes présentent des défauts d’appariement des chromosomes homologues et de réparation des cassures double-brin de l’ADN, ainsi qu’un arrêt de la progression en méiose en milieu de prophase I, phénotype similaire à celui de la souris KO pour Prdm9 (Prdm9-/-). L’ensemble de nos résultats met en évidence le rôle primordial de l’activité méthyltransférase de PRDM9 pour la détermination des sites de recombinaison méiotique et plus généralement pour la progression de la méiose et finalement la formation de gamètes chez la souris. / In sexually reproducing organisms, gametes are produced by a process comprising two successive division, called meiosis. During the first division, meiotic recombination enables a physical contact and an exchange of genetic material between homologous chromosomes. Meiotic recombination results from the repair, by homologous recombination, of programmed DNA double-strand breaks (DSBs) catalyzed by the SPO11 protein at the beginning of prophase I. In mammals, recombination events are localized in 1 to 2 kb-long regions called recombination hotspots. PRDM9, a PR/SET domain and zinc finger-containing protein, determines hotspot localization by targeting specific DNA sequences through its zinc finger array. Notably, PRDM9 PR/SET-domain possesses an H3K4 methyltransferase activity, while PRDM9-dependent H3K4me3 enrichment is found at hotspots in spermatocytes.We aimed at characterizing PRDM9 methyltransferase activity and studying its role in meiotic recombination initiation in mouse. The crystal structure of PRDM9 PR/SET domain, which we generated in complex with a histone H3 peptide, shows that this domain adopts a similar topology to that of classical SET domains and allowed us to identify key residues for its catalytic activity. PRDM9 PR/SET domain catalyzes not only mono-, di- and trimethylation of H3K4, but also of H3K9 and H3K36. We confirmed PRDM9 dependent H3K36 trimethylation in spermatocytes. Taking advantage of the distinct DNA binding specificity of two Prdm9 alleles, Prdm9b and Prdm9wm7, each activating its own set of hotspots, we generated transgenic mouse lines expressing either Prdm9wm7G278A or Prdm9wm7Y357F mutant allele together with the endogenous wild-type Prdm9b allele. Both G278A and Y357F mutations abolish PRDM9 catalytic activity. We show that PRDM9wm7Y357F binds normally to its genomic targets, but is not able to promote H3K4 nor H3K36 trimethylation at these sites. In addition, PRDM9wm7Y357F does not promote recombination at one Prdm9wm7-dependent hotspot, showing that PRDM9 catalytic activity is required for promoting recombination at hotspots. In mice expressing only the mutant allele (Prdm9wm7G278A or Prdm9wm7Y357F), spermatocytes display defects in homologous chromosome synapsis and DSBs repair, as well as an arrest of meiosis at the mid-prophase I. This phenotype is similar to that of Prdm9 KO mice. Overall, our results demonstrate the role of PRDM9 methyltransferase activity in determining recombination hotspots and more generally for meiotic progression and gametes formation.
|
372 |
Analysis of predictive power of binding affinity of PBM-derived sequencesMatereke, Lavious Tapiwa January 2015 (has links)
A transcription factor (TF) is a protein that binds to specific DNA sequences as part of the initiation stage of transcription. Various methods of finding these transcription factor binding sites (TFBS) have been developed. In vivo technologies analyze DNA binding regions known to have bound to a TF in a living cell. Most widely used in vivo methods at the moment are chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) and DNase I hypersensitive sites sequencing. In vitro methods derive TFBS based on experiments with TFs and DNA usually in artificial settings or computationally. An example is the Protein Binding Microarray which uses artificially constructed DNA sequences to determine the short sequences that are most likely to bind to a TF. The major drawback of this approach is that binding of TFs in vivo is also dependent on other factors such as chromatin accessibility and the presence of cofactors. Therefore TFBS derived from the PBM technique might not resemble the true DNA binding sequences. In this work, we use PBM data from the UniPROBE motif database, ChIP-seq data and DNase I hypersensitive sites data. Using the Spearman’s rank correlation and area under receiver operating characteristic curve, we compare the enrichment scores which the PBM approach assigns to its identified sequences and the frequency of these sequences in likely binding regions and the human genome as a whole. We also use central motif enrichment analysis (CentriMo) to compare the enrichment of UniPROBE motifs with in vivo derived motifs (from the JASPAR CORE database) in their respective TF ChIP-seq peak region. CentriMo is applied to 14 TF ChIP-seq peak regions from different cell lines. We aim to establish if there is a relationship between the occurrences of UniPROBE 8-mer patterns in likely binding regions and their enrichment score and how well the in vitro derived motifs match in vivo binding specificity. We did not come out with a particular trend showing failure of the PBM approach to predict in vivo binding specificity. Our results show Ets1, Hnf4a and Tcf3 show prediction failure by the PBM technique in terms of our Spearman’s rank correlation for ChIP-seq data and central motif enrichment analysis. However, the PBM technique also matched the in vivo binding specificities of FoxA2, Pou2f2 and Mafk. Failure of the PBM approach was found to be a result of variability in the TF’s binding specificity, the presence of cofactors, narrow binding specificity and the presence ubiquitous binding patterns.
|
373 |
Transposon regulation upon dynamic loss of DNA methylation / Régulation des transposons lors de la perte rapide de la methylation de l'ADNWalter, Marius 10 December 2015 (has links)
Les transposons sont des séquences d’ADN qui ont la capacité de se dupliquer de façon autonome, posant une menace pour l’intégrité et la stabilité du génome. De nombreux mécanismes existent pour contrôler l’expression des transposons, parmi lesquels la méthylation de l’ADN joue un rôle particulièrement important. Chez les mammifères, les profils de méthylation sont stables tout au long de la vie de l’individu, mis-à-part pendant deux moments clés du développement embryonnaire. Pendant ces deux périodes, la méthylation de l’ADN est globalement effacée, ce qui corrèle avec l’acquisition d’un état cellulaire pluripotent, puis rétablie. En utilisant un système cellulaire de reprogrammation de méthylation induite, ce travail s’est attaché à comprendre comment le génome parvient à maintenir le contrôle des transposons en l’absence de cette protection d’ordinaire essentielle, J’ai pu démontrer que divers mécanismes chromatiniens compensent progressivement la disparition de la méthylation de l’ADN pour le maintien de la répression des transposons. En particulier, la machinerie Polycomb prend en partie le relai et acquiert un rôle primordial, spécifiquement en l’absence de méthylation de l’ADN. Dans un second temps, la contribution du cofacteur d’ADN méthyltransférase DNMT3l lors de la méthylation de novo a été étudiée. Dans sa globalité, ces découvertes offrent des perspectives nouvelles sur la façon dont le génome se réorganise lors de moments clés du développement embryonnaire. / Transposons are DNA sequences that can duplicate autonomously in the genome, posing a threat for genome stability and integrity. To prevent their potentially harmful mobilization, eukaryotes have developed numerous mechanisms that control transposon expression, among which DNA methylation plays a particularly important role. In mammals, DNA methylation patterns are stable for life, at the exception of two key moments during embryonic development, gametogenesis and early embryogenesis. After a phase a global loss of genomic methylation accompanying the acquisition of pluripotent states, DNA methylation patterns are re- established de novo during differentiation. This work attempted to elucidate how the genome copes with the rapid loss of DNA methylation, in particular regarding the control of transposons in absence of this essential protective mark. Using an embryonic cellular model of induced methylation reprogramming, I showed that various chromatin-based mechanisms can compensate for the progressive loss of DNA methylation. In particular, my results suggest that the Polycomb machinery acquires a critical role in transposon silencing, providing a mechanistic relay specifically when DNA methylation patterns are erased. In a second phase, this work analyzed the contribution of the DNA methyltransferase cofactor DNMT3l during events of embryonic de novo methylation. Overall, these findings shed light onto the processes by which genome regulation adapts during DNA methylation reprogramming.
|
374 |
Structural and biochemical studies of the yeast linker histone, Hho1pOsmotherly, Lara May January 2010 (has links)
The basic unit of eukaryotic chromatin is the nucleosome core, which contains 147 base pairs of DNA wrapped around an octamer of core histone proteins. Linker histones bind through their globular domain at the nucleosome dyad and to internucleosomal DNA through their C-terminal basic tail. The Saccharomyces cerevisiae linker histone homologue, Hho1p, contains two domains, GI and GII, that have sequence similarity to the globular domain of the canonical linker histone H1. The individual domains of Hho1p differ in their structural and functional properties, for example in 10 mM sodium phosphate GI is folded while GII exists as two species: folded and 'unfolded'. In Chapter 2 the structure of the second globular domain of Hho1p, GII, is further investigated. NMR studies indicate residual structure in the 'unfolded' form of GII, especially at the start of helices I and III. Chapter 3 considers the structural roles of Hho1p within chromatin. Semi-quantitative Western blotting is used to measure the abundance of Hho1p relative to nucleosomes in yeast. Analysis of reconstituted nucleosome arrays containing NGIL (Hho1p with the second globular domain removed) are indistinguishable from those containing full-length Hho1p, in gel-based assays and by analytical ultracentrifugation, suggesting the GII domain may not have a major role in chromatin compaction. Chapter 4 focuses on the interaction of Hho1p with chromatin proteins. Chemical cross-linking and gel filtration indicate that Hho1p does not interact significantly with the putative HMGB1 homologues Hmo1p and Nhp6ap in vitro. Hho1p and Htz1p, the yeast histone H2A.Z subtype, do not appear to interact directly in co-immunoprecipitation and chemical cross-linking assays, while chromatin immunoprecipitation studies show no evidence of colocalisation across the ADH2 and PHO5 genes. Hho1p and Sir2p cross-link in solution, but purification difficulties precluded further investigation. The effect of phosphorylation on the interaction of Hho1p and related truncation proteins with DNA and chromatin are investigated in Chapter 5. Phosphorylation reduces their affinity for linear DNA, but has different effects on the binding to four-way junction DNA for Hho1p and NGIL, compared with LGII (the linker region and GII domain of Hho1p). Phosphorylation has no obvious effect on the affinity of these proteins for chromatin in sucrose gradient centrifugation assays. NMR spectroscopy studies show that the linker region is mostly unstructured, with a short region showing some α-helical character. Phosphorylation of the linker domain changes its structural character.
|
375 |
Snf2l Regulates Foxg1 Expression to Control Cortical Progenitor Cell Proliferation and DifferentiationMcGregor, Chelsea P. January 2012 (has links)
Over the past five years the role of epigenetic modifiers in brain development has become increasingly evident. In this regard, Snf2l, a homolog of the chromatin remodeling protein ISWI, was shown to have enriched expression in the brain and be important for neuronal differentiation. Mice lacking functional Snf2l have hypercellularity of the cerebral cortex due to increased cell cycle re-entry. In this thesis I demonstrate the effects of Snf2l-ablation on cortical progenitor cells including increased proliferation and cell cycle deregulation, the consequence of which is a delay in neuronal migration and altered numbers of mature cortical neurons. This phenotype arises from increased expression of Foxg1, a winged-helix repressor expressed in the forebrain and anterior optic vesicle. Moreover, genetically reducing its overexpression rescues the Snf2l-ablated phenotype. Snf2l is bound directly to a promoter region of Foxg1 suggesting that it acts as a repressive regulator in vivo and is an important factor in forebrain differentiation.
|
376 |
CDX2 Regulates Gene Expression Through Recruitment of BRG1-Associated SWI/SNF Chromatin Remodeling ActivityNguyen, Thinh January 2016 (has links)
The packaging of genomic DNA into nucleosomes creates a barrier to transcription which can be relieved through ATP-dependent chromatin remodeling via complexes such as the switch/sucrose non-fermentable (SWI/SNF) chromatin remodeling complex. The SWI/SNF complex remodels chromatin via conformational or positional changes of nucleosomes, thereby altering the access of transcriptional machinery to target genes. The SWI/SNF complex does not possess intrinsic DNA binding ability, and therefore its recruitment to target loci requires interaction with DNA-associated transcription factors. The Cdx family of homeodomain transcription factors (Cdx1, Cdx2 and Cdx4) are essential for a number of developmental programs in the mouse. Cdx1 and Cdx2 also regulate intestinal homeostasis throughout life. Although a number of Cdx target genes have been identified, the basis by which Cdx members impact their transcription is poorly understood. We have found that Cdx members interact with the SWI/SNF complex and make direct contact with Brg1, a catalytic member of SWI/SNF. Both Cdx2 and Brg1 co-occupy a number of Cdx target genes, and both factors are necessary for transcriptional regulation of such targets. Finally, Cdx2 and Brg1 occupancy occurs coincident with chromatin remodeling at certain of these loci. Taken together, our findings suggest that Cdx transcription factors regulate target gene expression, in part, through recruitment of Brg1-associated SWI/SNF chromatin remodeling activity.
|
377 |
The Snf2h and Snf2l Nucleosome Remodeling Proteins Co-modulate Gene Expression and Chromatin Organization to Control Brain Development, Neural Circuitry Assembly and Cognitive FunctionsAlvarez-Saavedra, Matias A. January 2013 (has links)
Chromatin remodeling enzymes are instrumental for neural development as evidenced by their identification as disease genes underlying human disorders characterized by intellectual-disability. In this regard, the murine Snf2h and Snf2l genes show differential expression patterns during embryonic development, with a unique pattern in the brain where Snf2h is predominant in neural progenitors, while Snf2l expression peaks at the onset of differentiation. These observations led me to investigate the role of Snf2h and Snf2l in brain development by using conditionally targeted Snf2h and Snf2l mice.
I selectively ablated Snf2h expression in cortical progenitors, cerebellar progenitors, or postmitotic Purkinje neurons of the cerebellum, while Snf2l was deleted in the germline. I found that Snf2h plays diverse roles in neural progenitor expansion and postmitotic gene expression control, while Snf2l is involved in the precise timing of neural differentiation onset. Gene expression studies revealed that Snf2h and Snf2l co-modulate the FoxG1 and En1 transcription factors during cortical and cerebellar neurogenesis, respectively, to precisely control the transition from a progenitor to a differentiated neuron. Moreover, Snf2h is essential for the postmitotic neural activation of the clustered protocadherin genes, and does so by functionally interacting with the matrix-attachment region protein Satb2. My neurobehavioral studies also provided insight into how Snf2h loss in cerebellar progenitors results in cerebellar ataxia, while Snf2h loss in cortical progenitors, or in postmitotic Purkinje neurons of the cerebellum, resulted in learning and memory deficits, and hyperactive-like behavior.
Molecularly, Snf2h plays an important role in linker histone H1e dynamics and higher order chromatin packaging, as evidenced by loss of chromatin ultrastructure upon Snf2h deletion in progenitor and postmitotic neurons. I further demonstrated that Snf2h loss in a neuronal cell culture model results in reduced H1e deposition, and that overexpression of human SNF2H or SNF2L upon Snf2h knockdown rescues this biochemical dysfunction. My experiments suggest that Snf2h and Snf2l are regulatory nucleosome remodeling engines that co-modulate the gene expression programs necessary for proper brain development, maturation and function.
|
378 |
Etudes fonctionnelles des protéines nucléaires dupliquées chez Arabidopsis thaliana / Functional study of duplicated nucleolin genes in A. thaliana.Durut, Nathalie 08 December 2014 (has links)
Chez les eucaryotes, les gènes d’ARNr 45S sont présents en un grand nombre de copies organisées dans des régions chromosomiques appelées NOR pour « Nucleolus Organizer Region ». Cependant, seule une fraction de ces gènes est activement exprimée et leur activation/répression est majoritairement contrôlée par des mécanismes épigénétiques. Parmi les facteurs requis pour l’expression de ces gènes, se trouve la nucléoline, une protéine majeure du nucléole. Chez A. thaliana, la protéine NUC1 est nécessaire pour le maintien de la méthylation et le control de l’expression de variants spécifiques des gènes d’ARNr. De manière intéressante, contrairement aux animaux et aux levures, le génome des plantes possède un deuxième gène codant la nucléoline : NUC2. Au cours de cette étude, nous avons montré que les deux gènes NUC1 et NUC2 sont nécessaires pour la survie de la plante. L’étude de plantes mutées pour le gène NUC2 a révélé que cette protéine est impliquée dans l’organisation et l’expression des ADNr mais par des mécanismes antagonistes à ceux de son homologue NUC1. En effet, l’absence de la NUC2 induit une hyperméthylation des ADNr ainsi qu’une réorganisation spatiale et une variation du nombre de copie des différents variants des gènes d’ARNr. Par ailleurs, la protéine NUC1 se lie aux gènes actifs alors que la protéine NUC2 est associée à la chromatine condensée en périphérie du nucléole. En parallèle, nous avons montré que l’expression des ADNr est affectée en réponse à la chaleur et que le gène NUC2 est fortement induit. L’ensemble de ces données suggèrent un potentiel rôle de la NUC2 dans la répression des gènes d’ARNr au cours du développement et en réponse au stress. / In eukaryotes, 45S rRNA genes are highly repeated and localize in chromosomal regions known as NOR for “Nucleolus Organizer Regions”. However, only a small proportion of these genes is transcriptionally active and their activation and/or repression depends on epigenetic mechanisms. One of the factors involved in rDNA expression is nucleolin, a major nucleolar protein. In A. thaliana, nucleolin protein NUC1 is required to maintain rDNA methylation and control expression of specific rDNA variants. Interestingly, in contrast to animals and yeast, plants encode a second nucleolin gene: NUC2. Here, we show that NUC1 and NUC2 genes are both required for plant survival. Analysis of nuc2 mutant plants reveals that NUC2 protein is required for rDNA organization and expression but with mechanisms antagonistic to those described for its homologue NUC1. In fact, loss of NUC2 induces rDNA hypermethylation and a spatial reorganization of rRNA genes with changes in copy numbers of rDNA variants. Moreover, NUC1 protein binds transcriptionally active rRNA genes while NUC2 protein associates with condensed chromatin in the periphery of the nucleolus. Furthermore, we show that rRNA gene expression is affected in response to heat shock and that the NUC2 gene is strongly induced. Altogether, our results suggest a potential role of NUC2 protein in rDNA repression during development and/or in response to stress.
|
379 |
Implication des protéines HMGA et HMGA2 dans les changements du programme de réplication au cours de la sénescence cellulaire / HMGA proteins modify the replication program during senescenceKahli, Malik 20 September 2011 (has links)
La sénescence, considérée comme étant un arrêt irréversible du cycle cellulaire, se caractérise par des changements drastiques de l'expression génique et de l'organisation de la structure de la chromatine. En effet, il se forme des foyers denses d'hétérochromatine au sein du noyau (SAHF) et ces modifications s'accompagnent d'un déclin progressif de la capacité à dupliquer le génome. Au cours de ma thèse, j'ai voulu savoir si ces modifications de la chromatine induite par les SAHF pouvaient influer sur le programme de réplication et changer la distribution des origines de réplication sur le génome au cours du processus d'entrée en sénescence réplicative des cellules. Nous avons donc, dans un premier temps, comparé par peignage moléculaire de l'ADN réplicatif la distribution des origines de réplication de cellules primaires prolifératives et sénescentes. Nous avons également cartographié l'ensemble de leurs origines de réplication sur la totalité du génome en purifiant les brins naissants aux origines de réplication que nous avons couplé à une analyse de séquençage à haut débit.Les protéines HMGA1 et HMGA2 étant des éléments précurseurs essentiels à la mise en place des SAHF, nous avons créé des lignées cellulaires qui, en sur-exprimant de façon inductibles ces protéines, induit une sénescence prématurée. Nous avons réalisé le même type d'analyses sur ces cellules afin de mettre en évidence le rôle de ces protéines dans les modifications du programme de réplication que nous avons observé au cours de l'entrée en sénescence de ces différents types cellulaires. / Senescence, considered as an irreversible cell cycle arrest, is characterized by dramatic changes in genes expression and chromatin organisation forming dense heterochromatic foci (SAHF). These changes are concomitant to a progressive decline of the capactity to replicate the genome. My PhD topic was to investigate whether the chromatin changes induced by SAHF formation could influence the replication program and modify the origin distribution along the genome at replicative senescence. We first compared the origin distribution of proliferative and pre-senescent primary fibroblasts by DNA molecular combing. Then, we mapped the origins positions in whole human genome by using the nascent strand purification assay coupled to deep sequencing.As HMGA1 and HMGA2 proteins are essential to induce SAHF formation, we designed inducible cell lines wich overexpress these proteins, triggering premature senescence. We made the same type of experiments in these cell lines in order to investigate the implication of these proteins on the changes of the replication program we observed during senescence.
|
380 |
Rôle de la régulation chromatinienne dans le contrôle de l’expression des gènes en réponse aux variations nutritionnelles en azote chez Arabidopsis / Role of chromatin regulation in the control of gene expression in response to nitrogen variations in ArabidopsisBellegarde, Fanny 08 December 2017 (has links)
Le nitrate est une source essentielle d’azote pour les plantes. Les transporteurs racinaires qui prélèvent le nitrate du sol sont soumis à des régulations transcriptionnelles qui modulent les capacités de prélèvement du nitrate. NRT2.1, transporteur de nitrate essentiel et majoritaire au niveau racinaire, est très fortement exprimé en condition limitante en nitrate, et réprimé sous forte nutrition azotée. Cette répression est corrélée avec un enrichissement en marque chromatinienne H3K27me3 qui semble dépendant du régulateur chromatinien HNI9. H3K27me3 est une marque chromatinienne répressive pour l’expression des gènes, catalysée par le complexe PRC2, et est impliquée dans la régulation du développement. Cependant, le rôle de H3K27me3 et de PRC2 dans l’adaptation à des environnements nutritionnels fluctuants reste à étudier. Le projet qui m’a été confié était d’étudier, chez Arabidopsis, la contribution de H3K27me3 dans la régulation du gène NRT2.1 en réponse à l'azote. Nous démontrons que H3K27me3 n’est pas le déterminant majeur de la répression de NRT2.1 par le fort statut azoté, mais que H3K27me3 régule directement NRT2.1, dans un contexte où NRT2.1 est fortement exprimé, afin de tempérer son expression. Nous montrons également que l’absence de limitation de l’hyperactivité du promoteur NRT2.1 peut in fine conduire à un état totalement réprimé par méthylation de l’ADN. Ce travail révèle une fonction insoupçonnée de PRC2 en tant que modulateur et protecteur de l’expression de gènes fortement exprimés. Nous montrons aussi que HNI9 aurait pour fonction d’activer des gènes de réponse à un stress oxydant mis en place lors d’une forte nutrition, et que PRC2 et NRT2.1 ont des rôles indépendants dans la régulation de l’architecture racinaire. L’ensemble de ce travail a permis de mettre en lumière de nouvelles fonctions de la dynamique chromatinienne dans la régulation de gènes majeurs pour la nutrition des plantes. / Nitrate is an essential source of nitrogen for plants. Root nitrate transporters are subjected to transcriptional regulations that allow a fine control of nitrate uptake capacities. NRT2.1, an essential and major nitrate transporter in roots, is strongly expressed under limiting nitrate condition, and repressed under high nitrogen nutrition. This repression is correlated with an enrichment in chromatin mark H3K27me3, which seems to be dependent on the chromatin regulator HNI9. H3K27me3 is a chromatin mark repressive for gene expression, catalysed by the PRC2 complex, and involved in developmental regulation. However, the role of H3K27me3 and PRC2 in the adaptation to fluctuating nitrogen environments remains to be understood. My project was to study, in Arabidopsis, the contribution of H3K27me3 in the regulation of NRT2.1 gene in response to nitrogen provision.We demonstrate that H3K27me3 is not the major determinant of NRT2.1 repression by high nitrogen status, but that H3K27me3 directly regulates NRT2.1, in a context where NRT2.1 is strongly expressed, to temper its expression. We also show that the absence of limitation of NRT2.1 promoter hyperactivity can lead to a switch to full silencing by DNA methylation.This reveals an unexpected function of PRC2 as a safeguard for the expression of highly expressed genes. We also show that HNI9 is involved in the activation of oxidative stress responsive genes, which occurs under N-rich nutrition, and that PRC2 and NRT2.1 play independent roles in the regulation of root architecture. This work has highlighted new functions of chromatin dynamic in the regulation of genes with major significance for plant nutrition.
|
Page generated in 0.0465 seconds