• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Systematic chromosome-wide search for novel fetal epigenetic markers for detection of fetal trisomy 13.

January 2010 (has links)
Lam, Yuk Man. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2010. / Includes bibliographical references (leaves 142-157). / Abstracts in English and Chinese. / ABSTRACT --- p.i / 摘要 --- p.iv / ACKNOWLEDGEMENTS --- p.vi / CONTRIBUTORS --- p.viii / PUBLICATIONS --- p.ix / LIST OF TABLES --- p.x / LIST OF FIGURES --- p.xi / LIST OF ABBREVIATIONS --- p.xiii / TABLE OF CONTENTS --- p.xiv / Chapter SECTION I: --- BACKGROUND --- p.1 / Chapter CHAPTER 1: --- PRENATAL DIAGNOSIS OF FETAL ANEUPLOIDIES --- p.2 / Chapter 1.1 --- The need for prenatal screening and diagnosis --- p.2 / Chapter 1.2 --- Patau Syndrome (Trisomy 13) --- p.2 / Chapter 1.3 --- Current methods for fetal aneuploidy detection --- p.4 / Chapter 1.3.1 --- Routine prenatal screening tests --- p.4 / Chapter 1.3.2 --- Definitive prenatal diagnosis by invasive procedures --- p.7 / Chapter 1.4 --- New approach for noninvasive prenatal diagnosis --- p.11 / Chapter 1.4.1 --- Circulating fetal cells --- p.11 / Chapter 1.4.2 --- Cell-free fetal nucleic acids in maternal circulation --- p.12 / Chapter 1.4.3 --- Diagnostic applications of cell-free fetal nucleic acids in maternal plasma --- p.12 / Chapter CHAPTER 2: --- DEVELOPMENT OF FETAL EPIGENETIC MARKERS IN MATERNAL PLASMA --- p.17 / Chapter 2.1 --- Limitations of fetal DNA markers --- p.17 / Chapter 2.2 --- DNA methylation is an actively-researched area under the field of epigenetics --- p.18 / Chapter 2.3 --- Genome-scale DNA methylation analysis brings new insight into epigenetics --- p.20 / Chapter 2.4 --- The first demonstration of using an epigenetic method for detecting maternally-inherited fetal DNA in maternal plasma --- p.22 / Chapter 2.5 --- The first universal marker for fetal DNA in maternal plasma --- p.24 / Chapter 2.6 --- Discovery of more fetal epigenetic markers --- p.25 / Chapter 2.6.1 --- Methylated fetal epigenetic markers are more desirable --- p.25 / Chapter 2.6.2 --- Discovery of hypermethylated fetal epigenetic markers by studying tumor suppressor genes --- p.26 / Chapter 2.6.3 --- Discovery of hypermethylated fetal epigenetic markers on chromosome 21 --- p.28 / Chapter 2.7 --- Noninvasive detection of fetal aneuploidies using fetal epigenetic markers --- p.29 / Chapter 2.7.1 --- Noninvasive detection of fetal trisomy 18 by the epigenetic allelic ratio (EAR) approach --- p.29 / Chapter 2.7.2 --- Noninvasive detection of fetal trisomy 21 by the epigenetic-genetic (EGG) approach --- p.30 / Chapter 2.8 --- Aim of thesis --- p.32 / Chapter SECTION II: --- MATERIALS AND METHODS --- p.34 / Chapter CHAPTER 3: --- METHODS FOR QUANTITATIVE ANALYSIS OF DNA METHYLATION --- p.35 / Chapter 3.1 --- Subject recruitment and sample collection --- p.35 / Chapter 3.2 --- Sample processing --- p.38 / Chapter 3.3 --- DNA extraction --- p.38 / Chapter 3.3.1 --- Placental tissues --- p.38 / Chapter 3.3.2 --- Maternal blood cells --- p.39 / Chapter 3.3.3 --- Maternal plasma --- p.40 / Chapter 3.4 --- Methylated DNA immunoprecipitation and tiling array analysis (MeDIP-chip) --- p.41 / Chapter 3.4.1 --- Principles --- p.41 / Chapter 3.4.2 --- DNA sample and array processing --- p.43 / Chapter 3.4.2.1 --- DNA preparation and target hybridization --- p.43 / Chapter 3.4.2.2 --- Data analysis --- p.44 / Chapter 3.5 --- DNA methylation analysis on randomly-chosen regions on chromosome / Chapter 3.6 --- Bisulfite conversion --- p.46 / Chapter 3.6.1 --- Principles of bisulfite conversion --- p.46 / Chapter 3.6.2 --- Procedures of bisulfite conversion --- p.46 / Chapter 3.7 --- Quantitative analysis of DNA methylation --- p.47 / Chapter 3.7.1 --- Bisulfite PCR and genomic sequencing --- p.47 / Chapter 3.7.1.1 --- Primer design for bisulfite polymerase chain reaction (PCR) --- p.47 / Chapter 3.7.1.2 --- Bisulfite PCR --- p.49 / Chapter 3.7.1.3 --- Cloning --- p.50 / Chapter 3.7.1.4 --- Bisulfite genomic sequencing --- p.52 / Chapter 3.7.1.5 --- Data acquisition and interpretation --- p.53 / Chapter 3.7.2 --- EpiTYPER,a mass-spectrometry-based method --- p.54 / Chapter 3.7.2.1 --- Principles of matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) --- p.54 / Chapter 3.7.2.2 --- Primer design of the EpiTYPER assay --- p.55 / Chapter 3.7.2.3 --- The EpiTYPER assay and its principle --- p.56 / Chapter 3.8 --- Methylation-sensitive restriction enzyme (MSRE)-mediated real-time quantitative PCR (qPCR) --- p.61 / Chapter 3.9 --- Digital PCR --- p.66 / Chapter 3.9.1 --- Principles of digital PCR --- p.66 / Chapter 3.9.2 --- Poisson distribution --- p.68 / Chapter 3.10 --- Statistical analyses --- p.69 / Chapter SECTION III: --- SYSTEMATIC IDENTIFICATION OF A FETAL DNA METHYLATION MARKER ON CHROMOSOME 13 FOR DETECTION OF FETAL TRISOMY 13 --- p.70 / Chapter CHAPTER 4: --- SYSTEMATIC IDENTIFICATION OF POTENTIAL FETAL EPIGENETIC MARKERS BY MEDIP-CHIP ANALYSIS --- p.71 / Chapter 4.1 --- Systematic discovery of fetal epigenetic markers on chromosome 13 by MeDIP-chip analysis --- p.71 / Chapter 4.2 --- Experimental design --- p.73 / Chapter 4.3 --- Results --- p.76 / Chapter 4.3.1 --- Identification of differentially methylated DNA regions by MeDIP-chip or non-MeDIP-chip approaches followed by EpiTYPER analysis --- p.76 / Chapter 4.3.2 --- Confirmation of differential methylation patterns and exclusion of regions with high inter-individual variations by EpiTYPER analysis --- p.82 / Chapter 4.3.3 --- Confirmation of differential DNA methylation patterns with higher resolution by bisulfite sequencing --- p.85 / Chapter 4.4 --- Discussion --- p.95 / Chapter CHAPTER 5: --- THE APPLICATION OF FETAL EPIGENETIC MARKER ON CHROMSOME 13 FOR DETECTION OF FETAL TRISOMY 13 --- p.98 / Chapter 5.1 --- Identification of a fetal epigenetic marker on chromosome 13 for the detection of fetal trisomy 13 by the epigenetic-genetic (EGG) chromosome dosage approach --- p.98 / Chapter 5.2 --- Experimental design --- p.101 / Chapter 5.3 --- Results --- p.105 / Chapter 5.3.1 --- Optimization of the digestion protocol --- p.105 / Chapter 5.3.2 --- Detection of digestion-resistant EFNB2-3'UTR moleculesin maternal plasma --- p.109 / Chapter 5.3.3 --- Evaluation of the fetal specificity of digestion-resistant EFNB2´ؤ3 'UTR DNA molecules in maternal plasma --- p.111 / Chapter 5.3.4 --- Comparison of EFNB2-3'UTR methylation profiles between the euploid and trisomy 13 placental tissue samples --- p.115 / Chapter 5.3.5 --- Chromosome dosage analysis by the EGG analysis using placental tissue samples --- p.118 / Chapter 5.4 --- Discussion --- p.122 / Chapter SECTION IV: --- CONCLUDING REMARKS --- p.125 / Chapter CHAPTER 6: --- CONCLUSION AND FUTURE PERSPECTIVES --- p.126 / Chapter 6.1 --- Development of fetal epigenetic markers for noninvasive prenatal diagnosis --- p.126 / Chapter 6.2 --- Systematic identification of fetal epigenetic markers on chromosome13 --- p.127 / Chapter 6.3 --- Detection of fetal trisomy 13 by the epigenetic-genetic (EGG) relative chromosome dosage analysis --- p.129 / Chapter 6.4 --- Future perspectives --- p.132 / Appendix I --- p.134 / Appendix II --- p.136 / REFERENCES --- p.142
2

Development of bioinformatics algorithms for trisomy 13 and 18 detection by next generation sequencing of maternal plasma DNA.

January 2011 (has links)
Chen, Zhang. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2011. / Includes bibliographical references (p. 109-114). / Abstracts in English and Chinese. / ABSTRACT --- p.I / 摘要 --- p.III / ACKNOWLEDGEMENTS --- p.IV / PUBLICATIONS --- p.VI / CONTRIBUTORS --- p.VII / TABLE OF CONTENTS --- p.VIII / LIST OF TABLES --- p.XIII / LIST OF FIGURES --- p.XIV / LIST OF ABBREVIATIONS --- p.XVI / Chapter SECTION I : --- BACKGROUND --- p.1 / Chapter CHAPTER 1: --- PRENATAL DIAGNOSIS OF FETAL TRISOMY BY NEXT GENERATION SEQUENCING TECHNOLOGY --- p.2 / Chapter 1.1 --- FETAL TRISOMY --- p.2 / Chapter 1.2 --- CONVENTIONAL PRENATAL DIAGNOSIS OF FETAL TRISOMIES --- p.3 / Chapter 1.3 --- CELL FREE FETAL D N A AND ITS APPLICATION IN PRENATAL DIAGNOSIS --- p.5 / Chapter 1.4 --- NEXT GENERATION SEQUENCING TECHNOLOGY --- p.5 / Chapter 1.5 --- SUBSTANTIAL BIAS IN THE NEXT GENERATION SEQUENCING PLATFORM --- p.9 / Chapter 1.6 --- PRENATAL DIAGNOSIS OF TRISOMY BY NEXT GENERATION SEQUENCING --- p.10 / Chapter 1.7 --- AIMS OF THIS THESIS --- p.11 / Chapter SECTION I I : --- MATERIALS AND METHODS --- p.13 / Chapter CHAPTER 2: --- METHODS FOR NONINVASIVE PRENATAL DIAGNOSIS OF FETAL TRISOMY MATERNAL PLASMA DNA SEQUENCING --- p.14 / Chapter 2.1 --- STUDY DESIGN AND PARTICIPANTS --- p.14 / Chapter 2.1.1 --- Ethics Statement --- p.14 / Chapter 2.1.2 --- "Study design, setting and participants" --- p.14 / Chapter 2.2 --- MATERNAL PLASMA D N A SEQUENCING --- p.17 / Chapter 2.3 --- SEQUENCING DATA ANALYSIS --- p.18 / Chapter SECTION I I I : --- TRISOMY 13 AND 18 DETECTION BY THE T21 BIOINFORMATICS ANALYSIS PIPELINE --- p.21 / Chapter CHAPTER 3: --- THE T21 BIOINFORMATICS ANALYSIS PIPELINE FOR TRISOMY 13 AND 18 DETECTION --- p.22 / Chapter 3.1 --- INTRODUCTION --- p.22 / Chapter 3.2 --- METHODS --- p.23 / Chapter 3.2.1 --- Bioinformatics analysis pipeline for trisomy 13 and 18 detection --- p.23 / Chapter 3.3 --- RESULTS --- p.23 / Chapter 3.3.1 --- Performance of the T21 bioinformatics analysis pipeline for trisomy 13 and 18 detection --- p.23 / Chapter 3.3.2 --- The precision of quantifying chrl 3 and chrl 8 --- p.27 / Chapter 3.4 --- DISCUSSION --- p.29 / Chapter SECTION IV : --- IMPROVING THE T21 BIOINFORMATICS ANALYSIS PIPELINE FOR TRISOMY 13 AND 18 DETECTION --- p.30 / Chapter CHAPTER 4: --- IMPROVING THE ALIGNMENT --- p.31 / Chapter 4.1 --- INTRODUCTION --- p.31 / Chapter 4.2 --- METHODS --- p.32 / Chapter 4.2.1 --- Allowing mismatches in the index sequences --- p.32 / Chapter 4.2.2 --- Calculating the mappability of the human reference genome --- p.33 / Chapter 4.2.3 --- Aligning reads to the non-repeat masked human reference genome --- p.34 / Chapter 4.2.4 --- Trisomy 13 and 18 detection --- p.34 / Chapter 4.3 --- RESULTS --- p.34 / Chapter 4.3.1 --- Increasing read numbers by allowing mismatches in the index sequences --- p.34 / Chapter 4.3.2 --- Increasing read numbers by using the non-masked reference genome for alignment . --- p.38 / Chapter 4.3.3 --- Allowing mismatches in the read alignment --- p.42 / Chapter 4.3.4 --- The performance of trisomy 13 and 18 detection after improving the alignment --- p.47 / Chapter 4.4 --- DISCUSSION --- p.50 / Chapter CHAPTER 5: --- REDUCING THE GC BIAS BY CORRECTION OF READ COUNTS --- p.53 / Chapter 5.1 --- INTRODUCTION --- p.53 / Chapter 5.2 --- METHODS --- p.54 / Chapter 5.2.1 --- Read alignment --- p.54 / Chapter 5.2.2 --- Calculating the correlation between GC content and read counts --- p.55 / Chapter 5.2.3 --- GC correction in read counts --- p.55 / Chapter 5.2.4 --- Trisomy 13 and 18 detection --- p.56 / Chapter 5.3 --- RESULTS --- p.56 / Chapter 5.3.1 --- GC bias in plasma DNA sequencing --- p.56 / Chapter 5.3.2 --- Correcting the GC bias in read counts by linear regression --- p.59 / Chapter 5.3.3 --- Correcting the GC bias in read counts by LOESS regression --- p.65 / Chapter 5.3.4 --- Bin size --- p.72 / Chapter 5.4 --- DISCUSSION --- p.75 / Chapter CHAPTER 6: --- REDUCING THE GC BIAS BY MODIFYING THE GENOMIC REPRESENTATION CALCULATION --- p.77 / Chapter 6.1 --- INTRODUCTION --- p.77 / Chapter 6.2 --- METHODS --- p.78 / Chapter 6.2.1 --- Modifying the genomic representation calculation --- p.78 / Chapter 6.2.2 --- Trisomy 13 and 18 detection --- p.78 / Chapter 6.2.3 --- Combining GC correction and modified genomic representation --- p.78 / Chapter 6.3 --- RESULTS --- p.79 / Chapter 6.3.1 --- Reducing the GC bias by modifying genomic representation calculation --- p.79 / Chapter 6.3.2 --- Combining GC correction and modified genomic representation --- p.86 / Chapter 6.4 --- DISCUSSION --- p.89 / Chapter CHAPTER 7: --- IMPROVING THE STATISTICS FOR TRISOMY 13 AND 18 DETECTION --- p.91 / Chapter 7.1 --- INTRODUCTION --- p.91 / Chapter 7.2 --- METHODS --- p.92 / Chapter 7.2.1 --- Comparing chrl 3 or chrl8 with other chromosomes within the sample --- p.92 / Chapter 7.2.2 --- Comparing chrl 3 or chrl 8 with the artificial chromosomes --- p.92 / Chapter 7.3 --- RESULTS --- p.93 / Chapter 7.3.1 --- Determining the trisomy 13 and 18 status by comparing chromosomes within the samples --- p.93 / Chapter 7.3.2 --- Determining the trisomy 13 and 18 status by comparing chrl3 or chrl 8 with artificial chromosomes --- p.97 / Chapter 7.4 --- DISCUSSION --- p.100 / Chapter SECTION V : --- CONCLUDING REMARKS --- p.102 / Chapter CHAPTER 8: --- CONCLUSION AND FUTURE PERSPECTIVES --- p.103 / Chapter 8.1 --- THE PERFORMANCE OF THE T21 BIOINFORMATICS ANALYSIS PIPELINE DEVELOPED FOR TRISOMY 21 DETECTION IS SUBOPTIMAL FOR TRISOMY 13 AND 18 DETECTION --- p.103 / Chapter 8.2 --- THE ALIGNMENT COULD BE IMPROVED BY ALLOWING ONE MISMATCH IN THE INDEX AND USING THE NON-REPEAT MASKED HUMAN REFERENCE GENOME AS THE ALIGNMENT REFERENCE --- p.104 / Chapter 8.3 --- THE PRECISION OF QUANTIFYING CHR13 AND CHR18 COULD BE IMPROVED BY THE G C CORRECTION OR THE MODIFIED GENOMIC REPRESENTATION --- p.104 / Chapter 8.4 --- THE STATISTICS FOR TRISOMY 13 AND 18 DETECTION COULD BE IMPROVED BY COMPARING CHR13 OR CHR18 WITH ARTIFICIAL CHROMOSOMES WITHIN THE SAMPLE --- p.105 / Chapter 8.5 --- PROSPECTS FOR FUTURE WORK --- p.106 / REFERENCE --- p.109

Page generated in 0.061 seconds