• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • Tagged with
  • 12
  • 10
  • 7
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Canopy Architecture and Plant Density Effect in Short-Season Chickpea (Cicer arietinum L.)

Vanderpuye, Archibald W. 22 September 2010 (has links)
Chickpea (Cicer arietinum L.) production on the semi-arid Canadian Prairies is challenging due to a short growing season and low and variable moisture. The current recommended chickpea population density of 44 plants m-2 is based on preliminary studies and a narrow range of 20 to 50 plants m-2. The aims of this study were to i) determine optimum population density of varying chickpea canopy types, i.e., leaf type and growth habit, by investigating seed yield responses at 30 to 85 plants m-2 and ii) identify desirable parental traits for breeding programs by assessing growth and yield parameter responses to varying leaf types and growth habits at a range of population densities. Field experiments were conducted from 2002 to 2005. Canopy measurements and calculated variables included light interception, biomass, growth rate, seed yield, harvest index, ascochyta blight severity and radiation- and water use efficiencies. The plant density which produced the highest seed yield when averaged over years for each location for each treatment revealed that a plant density of at least 55 plants m-2 produced a 23% to 49% seed yield increase above that of the currently recommended plant density. This indicates that a higher seed yield average over the long term in spite of periodic low seed yield episodes will be more profitable to producers. Increasing plant density increased lowest pod height significantly in all except one location-year but did not explicitly increase ascochyta blight severity or decrease individual seed size. This suggests that increasing the recommended chickpea plant density on the Canadian Prairies will increase seed yield but would neither negatively impact individual seed size nor ascochyta blight severity, especially, when combined with good agronomic practices. Fern-leaved cultivars had significantly higher maximum intercepted light (62 to 91%), seed yield (136 to 369 g m-2), harvest index (0.33 to 0.53), yield-based water use efficiency (0.56 to 1.06 g m-2 mm-1) and lower ascochyta blight severity (3 to 27%) than the unifoliate cultivars in all location-years. The fern-leaved cultivars also tended to show significantly higher cumulative intercepted radiation (221 to 419 MJ m-2) and biomass (306 to 824 g m-2) but leaf type showed no consistent effect on radiation use efficiency. Cultivars with bushy growth habit generally performed better regarding maximum intercepted light (62 to 90%), cumulative intercepted radiation (233 to 421 MJ m-2), biomass (314 to 854 MJ m-2), seed yield (120 to 370 g m-2), harvest index (0.37 to 0.50), yield-based water use efficiency (0.56 to 1.06 g m-2 mm-1) and ascochyta blight severity (7 to 36%) than the erect cultivars. The overall performance of the spreading cultivar was generally intermediate between the bushy and erect cultivars except for ascochyta blight severity where the spreading cultivar exhibited significantly lower disease severity (3 to 36%). Radiation use efficiency was generally not influenced by growth habit. Increasing plant population density generally increased intercepted light, biomass and cumulative intercepted radiation on each sampling day after seeding resulting in a general increase in seed yield. Harvest index, however, remained constant and ascochyta blight severity was generally stable but radiation use efficiency decreased with increasing population density. Chickpea cultivars with fern leaves and bushy growth habit at higher than currently recommended population densities would best utilize the limited resources of the short-season Canadian prairie environment to maximize and stabilize seed yield.
12

The effect of water stress and storage conditions on seed quality of chickpea genotypes characterized by differences in seed size and coat colour

Vilakazi, Busisiwe 18 May 2018 (has links)
MSCAGR (Plant Production) / Department of Plant Production / Chickpea (Cicer arietinum L.) is an excellent utilizer of residual soil moisture in agricultural ecosystems. However, its seed quality and hence reproduction is constrained by water stress, seed size and storage conditions. This study was carried out at the University of KwaZulu- Natal (UKZN), Pietermaritzburg Campus. It was conducted to evaluate the performance of chickpea genotypes (Desi-K, Saina-K and ICCV-K) with different seed sizes on seedling emergence (i), seed ageing effect on seed quality and imbibition of genotypes produced under water stressed and non-stressed conditions (ii), and (iii) the effect of water stress during seed development on sugars and protein accumulation, germination and seed vigour. Pot experiments were conducted under glasshouse / tunnel conditions at the Controlled Environment Facilities (CEF). The experiment for objective 1 was laid out as a single factor in completely randomized design (CRD). Data on emergence rate, final hypocotyl and complete emergence was collected. The small seeded Desi-K showed higher and faster emergence compared to medium sized Saina-K and large seeded ICCV-K. In the experiment of the second objective, seeds of the three genotypes were first obtained by production under water stressed and non-stressed growing conditions. They were then aged for 0, 1, 3, 5, or 7 days at 41 ºC and 100% relative humidity to form a 2 x 3 x 5 (water levels x genotypes x ageing) factorial design. Data was collected on germination percentage (GP), mean germination time (MGT), electrical conductivity (EC), tetrazolium chloride test (TZ) and imbibition weight. Seed ageing caused progressive loss of seed viability and vigour in all genotypes, which resulted in lower GP, delayed MGT, reduced TZ staining, cell death and high solute leakage from the seeds produced under the two water regimes. However, the effect was more severe under water stressed conditions. In the experiment for objective 3, seeds of all three genotypes were larger when grown under non-stressed condition compared to those under water stressed condition. These larger seeds had higher seed viability and germination percentage but lower electrical conductivity and mean germination time. Stressed seeds had higher soluble sugars than non-stressed seeds. It was deduced that irrigation during seed development reduces the final sugars and protein content but increases the seed size and physiological quality parameters allied to production of chickpea. Therefore, water provision to chickpea crop is critical during seed development. / NRF

Page generated in 0.0328 seconds