• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 7
  • 7
  • 6
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On C^1 Rigidity for Circle Maps with a Break Point

Mazzeo, Elio 17 December 2012 (has links)
The thesis consists of two main results. The first main result is a proof that C^1 rigidity holds for circle maps with a break point for almost all rotation numbers. The second main result is a proof that C^1 robust rigidity holds for circle maps in the fractional linear transformation (FLT) pair family. That is, for this family, C^1 rigidity holds for all irrational rotation numbers. The approach taken here of proving a more general theorem that C^1 rigidity holds for circle maps with a break point satisfying a `derivatives close condition', allows us to obtain both of our main results as corollaries of this more general theorem.
2

On C^1 Rigidity for Circle Maps with a Break Point

Mazzeo, Elio 17 December 2012 (has links)
The thesis consists of two main results. The first main result is a proof that C^1 rigidity holds for circle maps with a break point for almost all rotation numbers. The second main result is a proof that C^1 robust rigidity holds for circle maps in the fractional linear transformation (FLT) pair family. That is, for this family, C^1 rigidity holds for all irrational rotation numbers. The approach taken here of proving a more general theorem that C^1 rigidity holds for circle maps with a break point satisfying a `derivatives close condition', allows us to obtain both of our main results as corollaries of this more general theorem.
3

Rotation intervals for quasi-periodically forced circle maps

Pina Romero, Silvia January 2012 (has links)
This work investigates some aspects of the dynamics of non-invertible quasi-periodic circle maps, from the point of view of rotation numbers and their structure in parameter space.Circle maps and quasi-periodically forced circle maps have been widely used asa model for a broad range of physical phenomena. From the mathematical point of view they have also received considerable attention because of the many interesting features they exhibit.The system used is given by the maps: x_n = [ x_n-1 + a + b/(2pi) sin( 2pi x_n-1) + c sin( 2pi theta_n-1) ] mod 1, and, theta_n = theta_n-1 + omega.Where a, b and c are real constants. In addition, b and omega are restricted, respectively, to values larger than one and irrational.A fundamental part of this thesis consists of numerical approximations of rotation intervals using and adapting of the work of Boyland (1986) to the quasi-periodic case.Particular emphasis was given to the case of large coupling strength in quasi-periodicforcing.Examination of the computed rotation numbers for the large coupling case, together with previous claims suggesting that for large coupling strength the b-term could be neglected (see Ding (1989)), led to the formulation of an ergodic argument which is statistically supported. This argument indicates that, for this case, the qualitative behavior of rotation number depends linearly on a. It is also shown that the length of the rotation interval, when the transition from a trivial rotation interval (invertible case) to a non-trivial rotation interval occurs, it develops locally as a universal unfolding.A different map, piecewise monotone, and structurally similar to the maps defined to calculate the edges of rotation intervals in Boyland (1986), is studied to illustrate how the rotation number grows. The edges of rotation intervals are analytically calculated and matched with numerical observations.
4

Rigidez quase-simétrica para mapas multicríticos do círculo / Quasisymmetric rigidity of multicritical circle maps

Jacinto, Gabriela Alexandra Estevez 10 March 2017 (has links)
No presente trabalho consideramos homeomorfismos do círculo sem pontos periódicos e com o mesmo número finito de pontos críticos todos de tipo non-flat. Provamos que se existe uma conjugação topológica entre dois destes mapas que leva ponto crítico em ponto crítico, sem necessidade de preservar criticalidades, então dita conjugação é uma transformação quase-simétrica com distorção quase-simétrica local uniformemente limitada. Estes resultados são válidos para qualquer número de rotação irracional e são independentes da natureza das criticalidades dos pontos críticos, de modo que nossos resultados são válidos para toda criticalidade real. / In this work we consider circle homeomorphisms without periodic points and with finite number of critical points all of them being non-flat. We prove that if there exists a topological conjugacy between two of those maps which sends critical point into critical point, which not necessarily preserve criticalities, then this conjugacy is a quasi-symmetric map with quasi-symmetric distortion universally bounded. All these results are valid for any irrational rotation number and are independent of the nature of the criticalities, therefore our results are valid for all real criticalities.
5

Rigidez quase-simétrica para mapas multicríticos do círculo / Quasisymmetric rigidity of multicritical circle maps

Gabriela Alexandra Estevez Jacinto 10 March 2017 (has links)
No presente trabalho consideramos homeomorfismos do círculo sem pontos periódicos e com o mesmo número finito de pontos críticos todos de tipo non-flat. Provamos que se existe uma conjugação topológica entre dois destes mapas que leva ponto crítico em ponto crítico, sem necessidade de preservar criticalidades, então dita conjugação é uma transformação quase-simétrica com distorção quase-simétrica local uniformemente limitada. Estes resultados são válidos para qualquer número de rotação irracional e são independentes da natureza das criticalidades dos pontos críticos, de modo que nossos resultados são válidos para toda criticalidade real. / In this work we consider circle homeomorphisms without periodic points and with finite number of critical points all of them being non-flat. We prove that if there exists a topological conjugacy between two of those maps which sends critical point into critical point, which not necessarily preserve criticalities, then this conjugacy is a quasi-symmetric map with quasi-symmetric distortion universally bounded. All these results are valid for any irrational rotation number and are independent of the nature of the criticalities, therefore our results are valid for all real criticalities.
6

Universalidade para homeomorfismos suaves por pedaços do círculo / Universality for smooth piecewise homeomorphism of the circle

Kleyber Mota da Cunha 15 February 2011 (has links)
Neste trabalho nós encontramos condições suficientes para que dois homeomorfismos do círculo, f e g, \'C POT. 2+\' por pedaços serem \'C POT. 1\' conjugados. Além de restrições sobre a combinatória dessas aplicações (nós assumimos que elas tem algum tipo de combinatória limitada) e uma condição necessária sobre as derivadas laterais nos pontos onde f e g não são diferenciáveis, nós também assumimos que a não-linearidade média de f e g é zero. A prova é baseada no estudo detalhado da renormalização de transformações de intercâmbio de intervalos generalizadas de genus um com certas restrições combinatoriais / In this work we find sufficient conditions for two piecewise \'C POT. 2+\' homeomorphisms f and g of the circle to be \'C POT. 1\' conjugate. Besides the restrictions on the combinatorics of the maps (we assume that the maps have the same bounded combinatorics) and necessary conditions on the one-side derivatives of points where f and g are not differentiable, we also assume zero mean nonlinearity for f and g. The proof relies on the detailed study of the renormalizations of genus one generalized interval exchange maps with certain restrictions on their combinatorics
7

Universalidade para homeomorfismos suaves por pedaços do círculo / Universality for smooth piecewise homeomorphism of the circle

Cunha, Kleyber Mota da 15 February 2011 (has links)
Neste trabalho nós encontramos condições suficientes para que dois homeomorfismos do círculo, f e g, \'C POT. 2+\' por pedaços serem \'C POT. 1\' conjugados. Além de restrições sobre a combinatória dessas aplicações (nós assumimos que elas tem algum tipo de combinatória limitada) e uma condição necessária sobre as derivadas laterais nos pontos onde f e g não são diferenciáveis, nós também assumimos que a não-linearidade média de f e g é zero. A prova é baseada no estudo detalhado da renormalização de transformações de intercâmbio de intervalos generalizadas de genus um com certas restrições combinatoriais / In this work we find sufficient conditions for two piecewise \'C POT. 2+\' homeomorphisms f and g of the circle to be \'C POT. 1\' conjugate. Besides the restrictions on the combinatorics of the maps (we assume that the maps have the same bounded combinatorics) and necessary conditions on the one-side derivatives of points where f and g are not differentiable, we also assume zero mean nonlinearity for f and g. The proof relies on the detailed study of the renormalizations of genus one generalized interval exchange maps with certain restrictions on their combinatorics

Page generated in 0.0653 seconds