• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Bornes inférieures et supérieures dans les circuits arithmétiques

Tavenas, Sébastien 09 July 2014 (has links) (PDF)
La complexité arithmétique est l'étude des ressources nécessaires pour calcu- ler des polynômes en n'utilisant que des opérations arithmétiques. À la fin des années 70, Valiant a défini (de manière semblable à la complexité booléenne) des classes de polynômes. Les polynômes, ayant des circuits de taille polyno- miale, considérés faciles forment la classe VP. Les sommes exponentielles de ces derniers correpondent alors à la classe VNP. L'hypothèse de Valiant est la conjecture que VP ̸= VNP.Bien que cette conjecture soit encore grandement ouverture, cette dernière semble toutefois plus accessible que son homologue booléen. La structure algé- brique sous-jacente limite les possibilités de calculs. En particulier, un résultat important du domaine assure que les polynômes faciles peuvent aussi être cal- culés efficacement en paralèlle. De plus, quitte à autoriser une augmentation raisonnable de la taille, il est possible de les calculer avec une profondeur de calcul bornée par une constante. Comme ce dernier modèle est très restreint, de nombreuses bornes inférieures sont connues. Nous nous intéresserons en premier temps à ces résultats sur les circuits de profondeur constante.Bürgisser a montré qu'une conjecture (la τ-conjecture) qui borne supérieu- rement le nombre de racines de certains polynômes univariés, impliquait des bornes inférieures en complexité arithmétique. Mais, que se passe-t-il alors, si on essaye de réduire, comme précédemment, la profondeur du polynôme consi- déré? Borner le nombre de racines réelles de certaines familles de polynômes permetterait de séparer VP et VNP. Nous étudierons finalement ces bornes su- périeures sur le nombre de racines réelles.
2

Bornes inférieures et supérieures dans les circuits arithmétiques / Upper and lower bounds for arithmetic circuits

Tavenas, Sébastien 09 July 2014 (has links)
La complexité arithmétique est l’étude des ressources nécessaires pour calcu- ler des polynômes en n’utilisant que des opérations arithmétiques. À la fin des années 70, Valiant a défini (de manière semblable à la complexité booléenne) des classes de polynômes. Les polynômes, ayant des circuits de taille polyno- miale, considérés faciles forment la classe VP. Les sommes exponentielles de ces derniers correpondent alors à la classe VNP. L’hypothèse de Valiant est la conjecture que VP ̸= VNP.Bien que cette conjecture soit encore grandement ouverture, cette dernière semble toutefois plus accessible que son homologue booléen. La structure algé- brique sous-jacente limite les possibilités de calculs. En particulier, un résultat important du domaine assure que les polynômes faciles peuvent aussi être cal- culés efficacement en paralèlle. De plus, quitte à autoriser une augmentation raisonnable de la taille, il est possible de les calculer avec une profondeur de calcul bornée par une constante. Comme ce dernier modèle est très restreint, de nombreuses bornes inférieures sont connues. Nous nous intéresserons en premier temps à ces résultats sur les circuits de profondeur constante.Bürgisser a montré qu’une conjecture (la τ-conjecture) qui borne supérieu- rement le nombre de racines de certains polynômes univariés, impliquait des bornes inférieures en complexité arithmétique. Mais, que se passe-t-il alors, si on essaye de réduire, comme précédemment, la profondeur du polynôme consi- déré? Borner le nombre de racines réelles de certaines familles de polynômes permetterait de séparer VP et VNP. Nous étudierons finalement ces bornes su- périeures sur le nombre de racines réelles. / Arithmetic complexity is the study of the required ressources for computing poynomials using only arithmetic operations. In the last of the 70s, Valiant defined (similarly to the boolean complexity) some classes of polynomials. The polynomials which have polynomial size circuits form the class VP. Exponential sums of these polynomials correspond to the class VNP. Valiant’s hypothesis is the conjecture that VP is different tVNP.Although this conjecture is still open, it seems more accessible than its boolean counterpart. The induced algebraic structure limits the possibilities of the computation. In particular, an important result states that the low de- gree polynomials can be efficiently computed in parallel. Moreover, if we allow a fair increasement of the size, it is possible to compute them with a constant depth. As this last model is very particular, some lower bounds are known.Bürgisser showed that a conjecture (τ-conjecture) which bounds the number of roots of some univariate polynomials, implies lower bounds in arithmetic complexity. But, what happens if we try to reduce as before the depth of the circuits for the polynomials? Bounding the number of real roots of some families of polynomials would imply a separation between VP and VNP. Finally we willstudy these upper bounds on the number of real roots.
3

Représentations des polynômes, algorithmes et bornes inférieures

Grenet, Bruno 29 November 2012 (has links) (PDF)
La complexité algorithmique est l'étude des ressources nécessaires -- le temps, la mémoire, ... -- pour résoudre un problème de manière algorithmique. Dans ce cadre, la théorie de la complexité algébrique est l'étude de la complexité algorithmique de problèmes de nature algébrique, concernant des polynômes.Dans cette thèse, nous étudions différents aspects de la complexité algébrique. D'une part, nous nous intéressons à l'expressivité des déterminants de matrices comme représentations des polynômes dans le modèle de complexité de Valiant. Nous montrons que les matrices symétriques ont la même expressivité que les matrices quelconques dès que la caractéristique du corps est différente de deux, mais que ce n'est plus le cas en caractéristique deux. Nous construisons également la représentation la plus compacte connue du permanent par un déterminant. D'autre part, nous étudions la complexité algorithmique de problèmes algébriques. Nous montrons que la détection de racines dans un système de n polynômes homogènes à n variables est NP-difficile. En lien avec la question " VP = VNP ? ", version algébrique de " P = NP ? ", nous obtenons une borne inférieure pour le calcul du permanent d'une matrice par un circuit arithmétique, et nous exhibons des liens unissant ce problème et celui du test d'identité polynomiale. Enfin nous fournissons des algorithmes efficaces pour la factorisation des polynômes lacunaires à deux variables.
4

Contributions to arithmetic complexity and compression / Contributions à la complexité arithmétique et à la compression

Lagarde, Guillaume 05 July 2018 (has links)
Cette thèse explore deux territoires distincts de l’informatique fondamentale : la complexité et la compression. Plus précisément, dans une première partie, nous étudions la puissance des circuits arithmétiques non commutatifs, qui calculent des polynômes non commutatifs en plusieurs indéterminées. Pour cela, nous introduisons plusieurs modèles de calcul, restreints dans leur manière de calculer les monômes. Ces modèles en généralisent d’autres, plus anciens et largement étudiés, comme les programmes à branchements. Les résultats sont de trois sortes. Premièrement, nous donnons des bornes inférieures sur le nombre d’opérations arithmétiques nécessaires au calcul de certains polynômes tels que le déterminant ou encore le permanent. Deuxièmement, nous concevons des algorithmes déterministes fonctionnant en temps polynomial pour résoudre le problème du test d’identité polynomiale. Enfin, nous construisons un pont entre la théorie des automates et les circuits arithmétiques non commutatifs, ce qui nous permet de dériver de nouvelles bornes inférieures en utilisant une mesure reposant sur le rang de la matrice dite de Hankel, provenant de la théorie des automates. Une deuxième partie concerne l’analyse de l’algorithme de compression sans perte Lempel-Ziv. Pourtant très utilisé, sa stabilité est encore mal établie. Vers la fin des années 90s, Jack Lutz popularise la question suivante, connue sous le nom de « one-bit catastrophe » : « étant donné un mot compressible, est-il possible de le rendre incompressible en ne changeant qu’un seul bit ? ». Nous montrons qu’une telle catastrophe est en effet possible. Plus précisément, en donnant des bornes optimales sur la variation de la taille de la compression, nous montrons qu’un mot « très compressible » restera toujours compressible après modification d’un bit, mais que certains mots « peu compressibles » deviennent en effet incompressibles. / This thesis explores two territories of computer science: complexity and compression. More precisely, in a first part, we investigate the power of non-commutative arithmetic circuits, which compute multivariate non-commutative polynomials. For that, we introduce various models of computation that are restricted in the way they are allowed to compute monomials. These models generalize previous ones that have been widely studied, such as algebraic branching programs. The results are of three different types. First, we give strong lower bounds on the number of arithmetic operations needed to compute some polynomials such as the determinant or the permanent. Second, we design some deterministic polynomial-time algorithm to solve the white-box polynomial identity problem. Third, we exhibit a link between automata theory and non-commutative arithmetic circuits that allows us to derive some old and new tight lower bounds for some classes of non-commutative circuits, using a measure based on the rank of a so-called Hankel matrix. A second part is concerned with the analysis of the data compression algorithm called Lempel-Ziv. Although this algorithm is widely used in practice, we know little about its stability. Our main result is to show that an infinite word compressible by LZ’78 can become incompressible by adding a single bit in front of it, thus closing a question proposed by Jack Lutz in the late 90s under the name “one-bit catastrophe”. We also give tight bounds on the maximal possible variation between the compression ratio of a finite word and its perturbation—when one bit is added in front of it.
5

Représentations des polynômes, algorithmes et bornes inférieures / Representations of polynomials, algorithms and lower bounds

Grenet, Bruno 29 November 2012 (has links)
La complexité algorithmique est l'étude des ressources nécessaires — le temps, la mémoire, … — pour résoudre un problème de manière algorithmique. Dans ce cadre, la théorie de la complexité algébrique est l'étude de la complexité algorithmique de problèmes de nature algébrique, concernant des polynômes.Dans cette thèse, nous étudions différents aspects de la complexité algébrique. D'une part, nous nous intéressons à l'expressivité des déterminants de matrices comme représentations des polynômes dans le modèle de complexité de Valiant. Nous montrons que les matrices symétriques ont la même expressivité que les matrices quelconques dès que la caractéristique du corps est différente de deux, mais que ce n'est plus le cas en caractéristique deux. Nous construisons également la représentation la plus compacte connue du permanent par un déterminant. D'autre part, nous étudions la complexité algorithmique de problèmes algébriques. Nous montrons que la détection de racines dans un système de n polynômes homogènes à n variables est NP-difficile. En lien avec la question « VP = VNP ? », version algébrique de « P = NP ? », nous obtenons une borne inférieure pour le calcul du permanent d'une matrice par un circuit arithmétique, et nous exhibons des liens unissant ce problème et celui du test d'identité polynomiale. Enfin nous fournissons des algorithmes efficaces pour la factorisation des polynômes lacunaires à deux variables. / Computational complexity is the study of the resources — time, memory, …— needed to algorithmically solve a problem. Within these settings, algebraic complexity theory is the study of the computational complexity of problems of algebraic nature, concerning polynomials. In this thesis, we study several aspects of algebraic complexity. On the one hand, we are interested in the expressiveness of the determinants of matrices as representations of polynomials in Valiant's model of complexity. We show that symmetric matrices have the same expressiveness as the ordinary matrices as soon as the characteristic of the underlying field in different from two, but that this is not the case anymore in characteristic two. We also build the smallest known representation of the permanent by a determinant.On the other hand, we study the computational complexity of algebraic problems. We show that the detection of roots in a system of n homogeneous polynomials in n variables in NP-hard. In line with the “VP = VNP ?”question, which is the algebraic version of “P = NP?” we obtain a lower bound for the computation of the permanent of a matrix by an arithmetic circuit, and we point out the links between this problem and the polynomial identity testing problem. Finally, we give efficient algorithms for the factorization of lacunary bivariate polynomials.

Page generated in 0.1079 seconds