• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 4
  • 3
  • Tagged with
  • 12
  • 12
  • 12
  • 7
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Regularity at infinity and global fibrations of real algebraic maps / Régularité à l'infini et fibrations globales des applications algébriques réelles

Dias, Luis Renato Gonçalves 28 February 2013 (has links)
Soit f:K^n-->K^p une application semi-algébrique de classe C^2 pour K=R, ou une application polynomiale pour K=C. Il est bien connu que f est une fibration localement triviale sur le complémentaire des valeurs de bifurcation B(f). Dans ce travail nous considérons la t-régularité et la rho-régularité dans l'étude de B(f). Nous démontrons que t-régularité est équivalent aux conditions de Rabier (1997), Gaffney (1999), Kurdyka, Orro, Simon (2000) et Jelonek (2003). On démontre que t-régularité implique rho-régularité. Avec la rho-régularité, on démontre un théorème de structure pour l'ensemble des valeurs non rho-régulières S(f). On démontre aussi que B(f) est inclus dans A_{rho}, où A_{rho} est l'union de f(Sing f) et S(f). Nous étudions aussi deux classes d'applications: les applications fair et les applications Newton non-dégénérées. Pour les fair, on obtient une interprétation de la t-régularité en termes de la clôture intégrale des modules, ce que étende le résultat de Gaffney (1999). Pour les Newton non dégénérées, nous obtenons une approximation de B(f), ce qui étende le résultat de Némethi et Zaharia (1990) et celui de Chen et Tibar (2012). Dans la dernière partie, on discute quelques conséquences:1).la t-régularité pour f:X --> K^p, où X est une variété lisse; 2).le problème de bijectivité des applications; 3).une formule pour calculer la caractéristique d'Euler des fibres régulières de f: R^n-->R^{n-1}. Les résultats présentés brièvement ci-dessus généralisent aussi certains résultats de Némethi et Zaharia (1990), Siersma et Tibar (1995), Paunescu et Zaharia (1997), Parusinski (1995) et Tibar (1998). / Let f:K^n-->K^p be a C^2 semi-algebraic mapping for K=R and a polynomial mapping for K=C. It is well-known that f is a locally trivial topological fibration over the complement of the bifurcation set B(f). In this work, we consider the t-regularity and rho-regularity to study B(f). We show that t-regularity is equivalent to regularity conditions of Rabier (1997), Gaffney (1999), Kurdyka, Orro, Simon (2000) and Jelonek (2003). We prove that t-regularity implies rho-regularity. From rho-regularity, we define the set of non rho-regular values S(f), and the set A_{rho}, which is the union of f(Sing f) and S(f). We prove a structure theorem for S(f) and A_{rho}. We also obtain that B(f) is contained in A_{rho}. We study also two classes of maps, the fair maps and the Newton non-degenerate maps. For fair maps, we give an interpretation of t-regularity in terms of integral closure of modules, which is a real counterpart of Gaffney's result (1999). For non-degenerate maps, we obtain an approximation for B(f) through a set which depends on the Newton polyhedron of f (results like this have been obtained by Némethi and Zaharia (1990) and by Chen and Tibar (2012)). To finish, we discuss some consequences of our work: the t-regularity for maps f: X-->K^p, where X is a smooth affine variety; the problem of bijectivity of semi-algebraic maps; and a formula to compute the Euler characteristic of regular fibers of f:R^n-->R^{n-1}. The above results are also extensions of some results obtained, for polynomial functions f:K^n-->K, by Némethi and Zaharia (1990), Siersma and Tibar (1995), Paunescu and Zaharia (1997), Parusinski (1995) and Tibar (1998).
2

Fonctions zêta réelles et équivalence de Nash après éclatements

Fichou, Goulwen 26 November 2010 (has links) (PDF)
Ce manuscrit présente une synthèse de mes travaux de recherche effectués au sein de l'IRMAR depuis mon arrivée à l'université de Rennes 1 en 2004. Il tente de dégager les idées directrices qui sous-tendent cette recherche, portant sur l'étude des singularités des germes de fonctions réelles à travers des relations d'équivalence après résolution des singularités, tout en se permettant à l'occasion de rentrer dans quelques détails en vue d'illustrer les méthodes utilisées.
3

Bornes inférieures et supérieures dans les circuits arithmétiques

Tavenas, Sébastien 09 July 2014 (has links) (PDF)
La complexité arithmétique est l'étude des ressources nécessaires pour calcu- ler des polynômes en n'utilisant que des opérations arithmétiques. À la fin des années 70, Valiant a défini (de manière semblable à la complexité booléenne) des classes de polynômes. Les polynômes, ayant des circuits de taille polyno- miale, considérés faciles forment la classe VP. Les sommes exponentielles de ces derniers correpondent alors à la classe VNP. L'hypothèse de Valiant est la conjecture que VP ̸= VNP.Bien que cette conjecture soit encore grandement ouverture, cette dernière semble toutefois plus accessible que son homologue booléen. La structure algé- brique sous-jacente limite les possibilités de calculs. En particulier, un résultat important du domaine assure que les polynômes faciles peuvent aussi être cal- culés efficacement en paralèlle. De plus, quitte à autoriser une augmentation raisonnable de la taille, il est possible de les calculer avec une profondeur de calcul bornée par une constante. Comme ce dernier modèle est très restreint, de nombreuses bornes inférieures sont connues. Nous nous intéresserons en premier temps à ces résultats sur les circuits de profondeur constante.Bürgisser a montré qu'une conjecture (la τ-conjecture) qui borne supérieu- rement le nombre de racines de certains polynômes univariés, impliquait des bornes inférieures en complexité arithmétique. Mais, que se passe-t-il alors, si on essaye de réduire, comme précédemment, la profondeur du polynôme consi- déré? Borner le nombre de racines réelles de certaines familles de polynômes permetterait de séparer VP et VNP. Nous étudierons finalement ces bornes su- périeures sur le nombre de racines réelles.
4

Nombres de Betti virtuels des ensembles symétriques par arcs et équivalence de Nash après éclatements

Fichou, Goulwen 28 November 2003 (has links) (PDF)
L'objet de la thèse est d'utiliser, en géométrie algébrique réelle, l'intégration motivique, une théorie développée par J. Denef et F. Loeser, dans le but de construire des invariants pour les singularités analytiques. Cette théorie de l'intégration motivique nécessite la connaissance de caractéristiques d'Euler généralisées pour les variétés algébriques réelles, c'est-à-dire d'invariants additifs et multiplicatifs qui permettent de construire des mesures calculables sur les espaces d'arcs. Or, si on dispose en géométrie algébrique complexe de bonnes caractéristiques d'Euler généralisées, ce n'est pas le cas en géométrie algébrique réelle. En effet la seule connue, mais peu utilisable, est la caractéristique d'Euler à supports compacts. Dans cette thèse, nous construisons un tel invariant pour une catégorie d'ensembles plus large, les ensembles symétriques par arcs, généralisant un résultat de C. McCrory et A. Parusiński. Cet invariant algébrique, appelé polynôme de Poincaré virtuel et construit à partir de nombres de Betti virtuels, est de plus invariant par isomorphismes de Nash. On applique alors l'intégration motivique, avec la mesure provenant du polynôme de Poincaré virtuel, pour étudier les germes de fonctions analytiques réelles. On construit en particulier des fonctions zêta, suivant les travaux de J. Denef et F. Loeser, que l'on prouve être des invariants pour un cas particulier de la relation d'équivalence analytique après éclatements, appelée l'équivalence de Nash après éclatements. On énonce de plus, concernant cette nouvelle relation entre germes de fonction Nash, un résultat de trivialisation pour une famille ayant de bonnes propriétés algébriques.
5

Calculs dans les jacobiennes de courbes algébriques, applications en géométrie algébrique réelle.

Mahé, Valéry 28 September 2006 (has links) (PDF)
Nous nous intéressons à un aspect quantitatif du dix-septième problème de Hilbert : construire une famille de polynômes en deux variables, à coefficients réels, de degré 8 en l'une des deux variables qui sont positifs mais ne sont pas somme de trois carrés de fractions rationnelles.<br /><br />Comme expliqué par Huisman et Mahé, un polynôme donné P en deux variables à coefficients réels, totalement positif, unitaire, sans facteur carré et de degré multiple de 4 en l'une des variables est une somme de trois carrés de fractions rationnelles si et seulement si la jacobienne d'une certaine courbe hyperelliptique (associée à P) possède un point ”antineutre”.<br /><br />Grâce à ce critère, et en suivant une méthode de Cassels, Ellison et Pfister, nous résolvons notre problème : à l'aide d'une 2-descente, nous montrons que la jacobienne associée à un certain polynôme positif est de rang de Mordell-Weil nul, puis nous vérifions que cette jacobienne n'a aucun point de torsion antineutre.
6

Géométrie tropicale et systèmes polynomiaux / Tropical geometry and polynomial systems

El Hilany, Boulos 21 September 2016 (has links)
Les systèmes polynomiaux réels sont omniprésents dans de nombreux domaines des mathématiques pures et appliquées. A. Khovanskii a fourni une borne fewnomiale supérieure sur le nombre de solutions positives non-dégénérées d'un système polynomial réel de n équations à n variables qui ne dépend que du nombre de monômes apparaissant dans les équations. Cette dernière borne a été récemment améliorée par F. Bihan et F. Sottile, mais la borne résultante peut être encore améliorée, même dans certains cas simples.Le but de ce travail est d'aborder trois problèmes importants dans la théorie des Fewnomials. Considérons une famille de systèmes polynomiaux réels avec une structure donnée (par exemple, support ou le nombre de monômes). Un problème est de trouver de bonnes bornes supérieures pour leurs nombres de solutions réelles (ou positives). Un autre problème est de construire des systèmes dont le nombre de solutions réelles (ou positives) sont proches de la meilleure borne supérieure connue. Lorsqu'une borne supérieure optimale est bien connue, qu'est ce qu'on peut dire dans le cas où elle est atteinte?Dans cette thèse, nous affinons un résultat de M. Avendaño en démontrant que le nombre de points d'intersection réels d'une droite réelle avec une courbe réelle plane définie par un polynôme avec au plus t monômes est soit infini ou ne dépasse pas $6t -7$. En outre, on montre que notre borne est optimale pour t=3 en utilisant les dessins d'enfant réels de Grothendieck. Cela montre que le nombre maximal de points d'intersection réels d'une droite réelle avec une courbe trinomiale réelle plane est onze.Nous considérons ensuite le problème de l'estimation du nombre maximal de points d'intersection transverses positifs d'une courbe plane trinomiale et d'une courbe plane t-nomiale. T-Y Li, J.-M. Rojas et X. Wang ont montré que ce nombre est borné par 2^t - 2, et récemment P. Koiran, N. Portier et S. Tavenas ont trouvé la borne supérieure 2t^3/3 +5t. Nous fournissons la borne supérieure $ 3*2^(t-2) - 1 qui est optimale pour t = 3 et est la plus petite pour t=4,...,9. Ceci est réalisé en utilisant la notion de dessins d'enfant réels. De plus, nous étudions en détail le cas t = 3 et nous donnons une restriction sur les supports des systèmes atteignant la borne optimale cinq.Un circuit est un ensemble de n+ 2 points dans $mathbb{R}^n$ qui sont minimalement affinement dépendants. Il est connu qu'un système supporté sur un circuit a au plus n+1 solutions positives non dégénérées, et que cette borne est optimale. Nous utilisons les dessins d'enfant réels et le patchwork combinatoire de Viro pour donner une caractérisation complète des circuits supportant des systèmes polynomiaux avec le nombre maximal de solutions positives non dégénérées.Nous considérons des systèmes polynomiaux de deux équations à deux variables avec cinq monômes distincts au total. Ceci est l'un des cas les plus simples où la borne supérieure optimale sur le nombre de solutions positives non dégénérées n'est pas connue. F. Bihan et F. Sottile ont prouvé que cette borne optimale est majorée par quinze. D'autre part, les meilleurs exemples avaient seulement cinq solutions positives non dégénérées.Nous considérons des systèmes polynomiaux comme avant, mais défini sur le corps des séries de Puiseux réelles généralisées et localement convergentes. Les images par l'application de valuation des solutions d'un tel système sont des points d'intersection de deux courbes tropicales planes. En utilisant des intersections non transverses des courbes tropicales planes, on obtient une construction d'un système polynomial réel comme ci-dessus ayant sept solutions positives non dégénérées. / Real polynomial systems are ubiquitous in many areas of pure and applied mathematics. A. Khovanskii provided a fewnomial upper bound on the number of non-degenerate positive solutions of a real polynomial system of $n$ equations in n variables that depends only on the number of monomials appearing in the equations. The latter bound was recently improved by F. Bihan and F. Sottile, but the resulting bound still has room for improvement, even in some simple cases.The aim of this work is to tackle three main problems in Fewnomial theory. Consider a family of real polynomial systems with a given structure (for instance, supports or number of monomials). One problem is to find good upper bounds for their numbers of real (or positive) solutions. Another problem is to construct systems whose numbers of real (or positive) solutions are close to the best known upper bound. When a sharp upper bound is known, what can be said about reaching it?In this thesis, we refine a result by M. Avendaño by proving that the number of real intersection points of a real line with a real plane curve defined by a polynomial with at most t monomials is either infinite or does not exceed 6t -7. Furthermore, we prove that our bound is sharp for t=3 using Grothendieck's real dessins d'enfant. This shows that the maximal number of real intersection points of a real line with a real plane trinomial curve is eleven.We then consider the problem of estimating the maximal number of transversal positive intersection points of a trinomial plane curve and a t-nomial plane curve. T-Y Li, J.-M. Rojas and X. Wang showed that this number is bounded by 2^t-2, and recently P. Koiran, N. Portier and S. Tavenas proved the upper bound 2t^3/3 +5t. We provide the upper bound 3*2^{t-2} - 1 that is sharp for t=3 and is the tightest for t=4,...,9. This is achieved using the notion of real dessins d'enfant. Moreover, we study closely the case t=3 and give a restriction on the supports of systems reaching the sharp bound five.A circuit is a set of n+2 points in mathbb{R}^n that is minimally affinely dependent. It is known that a system supported on a circuit has at most n+1 non-degenerate positive solutions, and that this bound is sharp. We use real dessins d'enfant and Viro's combinatorial patchworking to give a full characterization of circuits supporting polynomial systems with the maximal number of non-degenerate positive solutions.We consider polynomial systems of two equations in two variables with a total of five distinct monomials. This is one of the simplest cases where the sharp upper bound on the number of non-degenerate positive solutions is not known. F. Bihan and F. Sottile proved that this sharp bound is not greater than fifteen. On the other hand, the best examples had only five non-degenerate positive solutions. We consider polynomial systems as before, but defined over the field of real generalized locally convergent Puiseux series. The images by the valuation map of the solutions of such a system are intersection points of two plane tropical curves. Using non-transversal intersections of plane tropical curves, we obtain a construction of a real polynomial system as above having seven non-degenerate positive solutions.
7

Bornes inférieures et supérieures dans les circuits arithmétiques / Upper and lower bounds for arithmetic circuits

Tavenas, Sébastien 09 July 2014 (has links)
La complexité arithmétique est l’étude des ressources nécessaires pour calcu- ler des polynômes en n’utilisant que des opérations arithmétiques. À la fin des années 70, Valiant a défini (de manière semblable à la complexité booléenne) des classes de polynômes. Les polynômes, ayant des circuits de taille polyno- miale, considérés faciles forment la classe VP. Les sommes exponentielles de ces derniers correpondent alors à la classe VNP. L’hypothèse de Valiant est la conjecture que VP ̸= VNP.Bien que cette conjecture soit encore grandement ouverture, cette dernière semble toutefois plus accessible que son homologue booléen. La structure algé- brique sous-jacente limite les possibilités de calculs. En particulier, un résultat important du domaine assure que les polynômes faciles peuvent aussi être cal- culés efficacement en paralèlle. De plus, quitte à autoriser une augmentation raisonnable de la taille, il est possible de les calculer avec une profondeur de calcul bornée par une constante. Comme ce dernier modèle est très restreint, de nombreuses bornes inférieures sont connues. Nous nous intéresserons en premier temps à ces résultats sur les circuits de profondeur constante.Bürgisser a montré qu’une conjecture (la τ-conjecture) qui borne supérieu- rement le nombre de racines de certains polynômes univariés, impliquait des bornes inférieures en complexité arithmétique. Mais, que se passe-t-il alors, si on essaye de réduire, comme précédemment, la profondeur du polynôme consi- déré? Borner le nombre de racines réelles de certaines familles de polynômes permetterait de séparer VP et VNP. Nous étudierons finalement ces bornes su- périeures sur le nombre de racines réelles. / Arithmetic complexity is the study of the required ressources for computing poynomials using only arithmetic operations. In the last of the 70s, Valiant defined (similarly to the boolean complexity) some classes of polynomials. The polynomials which have polynomial size circuits form the class VP. Exponential sums of these polynomials correspond to the class VNP. Valiant’s hypothesis is the conjecture that VP is different tVNP.Although this conjecture is still open, it seems more accessible than its boolean counterpart. The induced algebraic structure limits the possibilities of the computation. In particular, an important result states that the low de- gree polynomials can be efficiently computed in parallel. Moreover, if we allow a fair increasement of the size, it is possible to compute them with a constant depth. As this last model is very particular, some lower bounds are known.Bürgisser showed that a conjecture (τ-conjecture) which bounds the number of roots of some univariate polynomials, implies lower bounds in arithmetic complexity. But, what happens if we try to reduce as before the depth of the circuits for the polynomials? Bounding the number of real roots of some families of polynomials would imply a separation between VP and VNP. Finally we willstudy these upper bounds on the number of real roots.
8

Tropical intersection theory, and real inflection points of real algebraic curves / Théorie d’intersection tropicale, et points d’inflexion réels des courbes algébriques réelles

Garay-Lopez, Cristhian Emmanuel 29 September 2015 (has links)
Cette thèse est divisée en deux parties principales. D’abord on étudie des relations entre les théories d’intersection en géométrie tropicale et géométrie algébrique. Puis on étudie la question des possibilités pour la distribution de points d’inflexion réels associés à un système linéaire réel défini sur une courbe algébrique réelle lisse. Dans la première partie, nous présentons des nouveaux résultats reliant les théories d’intersection algébrique et tropicale dans une variété algébrique très affine définie sur un corps non-archimédien particulier (dit corps de Mal’cev-Neumann). Le résultat principale concerne l’intersection d’un cycle algébrique de dimension 1 dans une variété à tropicalisation simple avec un diviseur de Cartier. Dans la deuxième partie, nous obtenons d’abord une caractérisation de la répartition des points d’inflexion réels d’un système linéaire complet de degré d>1 sur une courbe elliptique réelle lisse. Puis nous étudions quelques courbes réelles non-hyperelliptiques canoniques de genre 4 dans l’espace projectif de dimension 3. Nous obtenons une formule qui relie le nombre de points de Weierstrass réels d’une telle courbe avec la caractéristique d’Euler-Poincaré d’un certain espace topologique. Finalement, en utilisant la technique du Patchworking (dû à O. Viro), on construit un exemple de courbe réelle, lisse, non-hyperelliptique de genre 4 ayant 30 points de Weierstrass réels. / This thesis is divided in two main parts. First, we study the relationships between intersection theories in tropical and algebraic geometry. Then, we study the question of the possibilities for the distribution of the real inflection points associated to a real linear system defined on a smooth real algebraic curve. In the first part, we present new results linking algebraic and tropical intersection theories over a very-affine algebraic variety defined over a particular non-Archimedean field (known as Mal’cev-Newmann field). The main result concerns the intersection of a one-dimensional algebraic cycle with a Cartier divisor in a variety with simple tropicalization. In the second part, we obtain first a characterization of the distribution of real inflection points associated to a real complete linear system of degree d>1 defined over a smooth real elliptic curve. Then we study some canonical, non-hyperelliptic real algebraic curves of genus 4 in a 3-dimensional projective space. We obtain a formule that relies the amount of real Weierstrass points of such a curve with the Euler-Poincaré characteristic of certain topological space. Finally, using O. Viro’s Patch-working technique, we construct an example of a smooth, non-hyperelliptic real algebraic curve of genus 4 having 30 real Weierstrass points.
9

Filtration par le poids équivariante pour les variétés algébriques réelles avec action

Priziac, Fabien 28 November 2012 (has links) (PDF)
Introduite par B. Totaro, la filtration par le poids sur l'homologie des variétés algébriques réelles, analogue réel de la filtration par le poids de P. Deligne sur les variétés algébriques complexes, a été réalisée via un complexe de chaînes filtré par C. McCrory et A. Parusinski, qui en ont enrichi la compréhension, notamment à travers l'étude de la suite spectrale induite. Au milieu des nombreuses informations recelées par cette suite spectrale de poids, on retrouve les nombres de Betti virtuels. Dans cette thèse, on montre l'existence d'une filtration par le poids équivariante sur l'homologie équivariante des variétés algébriques réelles munies d'une action d'un groupe fini. On la réalise par un complexe filtré et, via la construction de plusieurs suites spectrales, on effectue des avancées significatives pour extraire des invariants additifs. Lors de notre étude, on définit fonctoriellement un complexe de poids avec action et on montre qu'un résultat de découpage d'une variété Nash munie d'une involution algébrique entraîne un analogue de la suite exacte de Smith, tenant compte de la filtration Nash-constructible. A travers la construction d'un complexe de poids invariant dans le cadre d'involutions algébriques, on retrouve également les nombres de Betti virtuels équivariants de G. Fichou. Enfin, en appliquant les bons foncteurs aux résultats sur les produits de filtrations par le poids réelles de T. Limoges, on donne des résultats sur les produits de filtrations par le poids équivariantes.
10

Géométrie et dynamique sur les surfaces algébriques réelles

Moncet, Arnaud 20 June 2012 (has links) (PDF)
Cette thèse s'intéresse aux automorphismes des surfaces algébriques réelles, c'est-à-dire les transformations polynomiales admettant un inverse polynomial. La question centrale est de savoir si leur restriction au lieu réel reflète toute la richesse de la dynamique complexe. Celle-ci est traitée sous deux aspects : celui de l'entropie topologique et celui de l'ensemble de Fatou. Pour le premier point, on introduit une quantité purement géométrique, appelée concordance, qui ne dépend que de la surface. Puis on montre que le rapport des entropies réelle et complexe est relié à cette quantité. La concordance est calculée explicitement sur de nombreux exemples de surfaces, notamment les surfaces abéliennes qui sont traitées en détails, ainsi que certaines surfaces K3. Dans la seconde partie, on étudie l'ensemble de Fatou, qui correspond aux pointscomplexes pour lesquels la dynamique est simple. On montre, grâce à des résultats antérieurs de Dinh et Sibony sur les courants positifs fermés, que celui-ci est hyperbolique au sens de Kobayashi, quitte à lui enlever certaines courbes fixées par (unitéré de) notre transformation. Cette propriété permet d'en déduire que ce lieu réel ne peut pas être entièrement contenu dans l'ensemble de Fatou, hormis quelques cas exceptionnels où la topologie du lieu réel est simple et la dynamique bien comprise. Ainsi la complexité de la dynamique est presque toujours observable sur les points réels.

Page generated in 0.0602 seconds