• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 7
  • 3
  • Tagged with
  • 17
  • 17
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Complexité de problèmes de comptage, d'évaluation et de recherche de racines de polynômes.

Briquel, Irénée 29 November 2011 (has links) (PDF)
Dans cette thèse, nous cherchons à comparer la complexité booléenne classique et la complexité algébrique, en étudiant des problèmes sur les polynômes. Nous considérons les modèles de calcul algébriques de Valiant et de Blum, Shub et Smale (BSS). Pour étudier les classes de complexité algébriques, il est naturel de partir des résultats et des questions ouvertes dans le cas booléen, et de regarder ce qu'il en est dans le contexte algébrique. La comparaison des résultats obtenus dans ces deux domaines permet ainsi d'enrichir notre compréhension des deux théories. La première partie suit cette approche. En considérant un polynôme canoniquement associé à toute formule booléenne, nous obtenons un lien entre les questions de complexité booléenne sur la formule booléenne et les questions de complexité algébrique sur le polynôme. Nous avons étudié la complexité du calcul de ce polynôme dans le modèle de Valiant en fonction de la complexité de la formule booléenne, et avons obtenu des analogues algébriques à certains résultats booléens. Nous avons aussi pu utiliser des méthodes algébriques pour améliorer certains résultats booléens, en particulier de meilleures réductions de comptage. Une autre motivation aux modèles de calcul algébriques est d'offrir un cadre pour l'analyse d'algorithmes continus. La seconde partie suit cette approche. Nous sommes partis d'algorithmes nouveaux pour la recherche de zéros approchés d'un système de n polynômes complexes à n inconnues. Jusqu'à présent il s'agissait d'algorithmes pour le modèle BSS. Nous avons étudié l'implémentabilité de ces algorithmes sur un ordinateur booléen et proposons un algorithme booléen.
2

Complexité des représentations des systèmes de polynômes : triangulation, méthodes modulaires, évaluation dynamique.

Dahan, Xavier 24 November 2006 (has links) (PDF)
Les systèmes polynomiaux sous forme triangulaire, notamment les chaînes régulières et en particulier les ensembles triangulaires (de Lazard), sont des structures de données simples, permettant d'envisager des calculs modulaires (par spécialisation des coefficients, puis remontée via un opérateur de Newton-Hensel), de "résoudre'' les systèmes de polynômes (méthodes de "triangulations'') et de représenter des tours d'extensions de corps pour calculer avec les nombres algébriques. Dans ces trois domaines, les méthodes et résultats nouveaux apportés, notamment sur le plan de la complexité, étendent le champs d'application des ensembles triangulaires, et leur impact face à d'autres méthodes de manipulation des équations polynomiales, surtout les bases de Gröbner. Tout d'abord la complexité en espace des coefficients n'est qu'en croissance quadratique en fonction de données géometriques naturelles. Conséquence directe en est un opérateur de Newton (triangulaire) requérant moins d'étapes de remontée, et donc des méthodes modulaires plus encourageantes. Il en est ainsi pour la décomposition équiprojetable, premier algorithme de triangulation des systèmes basé sur une méthode modulaire, et pour le problème du changement d'ordres monomiaux en dimension positive, dans des cas assez particuliers toutefois pour une première approche. Par ailleurs, calculer modulo un ensemble triangulaire en suivant le modèle de l'évaluation dynamique, se voit doté, 20 ans après sa création, d'un premier résultat de complexité satisfaisant.
3

Contribution à l'étude des solutions périodiques et des centres isochrones des systèmes d'équations différentielles ordinaires plans

Boussaada, Islam 09 December 2008 (has links) (PDF)
Le sujet global de cette thèse est l'étude des solutions périodiques des systèmes plans d'équations différentielles ordianaires. Elle est divisée en deux grandes parties.<br />La première partie, (il s'agit d'un travail publié et écrit en collaboration avec R. Chouikha) est consacré à la recherche des solutions périodiques de « l'équation de Liénard généralisée ». On démontre un théorème qui asure dans certains cas l'existence de telles solutions.<br />La seconde partie est consacré à la recherche de centres isochrones de systèmes d'équations différentielles ordinaires polynomiaux plans. Grâce à l'usage de C-algorithme, on détermine huit nouveaux cas. On montre aussi l'efficacité de la méthode des formes normales dans de telles recherches, en examinant des systèmes d'ordre 2, 3, 4 et en retrouvant de manière uniforme plusieurs résultats déjà connus.
4

Contributions à l'algorithmique détendue et à la résolution des systèmes polynomiaux

Lebreton, Romain 11 December 2012 (has links) (PDF)
Cette thèse est en majeure partie dédiée au calcul rapide de remontée p-adique par des algorithmes détendus. Dans une première partie, nous présentons le cadre général des algorithmes détendus et de leur application au calcul de p-adiques récursifs. Pour appliquer ce cadre à la remontée p-adique de divers systèmes d'équations, il reste à transformer ces équations implicites en équations récursives. Ainsi, la seconde partie traite des systèmes d'équations linéaires, éventuellement différentiels. La remontée de résolutions de systèmes polynomiaux se trouve en troisième partie. Dans tous les cas, les nouveaux algorithmes détendus sont comparés, en théorie comme en pratique, aux algorithmes existants. En quatrième partie, nous étudions l'algèbre de décomposition universelle d'un polynôme. Nous développons un algorithme rapide pour calculer une représentation adéquate de cette algèbre et l'utilisons pour manipuler efficacement les éléments de l'algèbre. Finalement, nous montrons en annexe que la recherche d'invariants fondamentaux d'algèbres d'invariants sous un groupe fini peut se faire directement modulo p, facilitant ainsi leur calcul.
5

Géométrie tropicale et systèmes polynomiaux / Tropical geometry and polynomial systems

El Hilany, Boulos 21 September 2016 (has links)
Les systèmes polynomiaux réels sont omniprésents dans de nombreux domaines des mathématiques pures et appliquées. A. Khovanskii a fourni une borne fewnomiale supérieure sur le nombre de solutions positives non-dégénérées d'un système polynomial réel de n équations à n variables qui ne dépend que du nombre de monômes apparaissant dans les équations. Cette dernière borne a été récemment améliorée par F. Bihan et F. Sottile, mais la borne résultante peut être encore améliorée, même dans certains cas simples.Le but de ce travail est d'aborder trois problèmes importants dans la théorie des Fewnomials. Considérons une famille de systèmes polynomiaux réels avec une structure donnée (par exemple, support ou le nombre de monômes). Un problème est de trouver de bonnes bornes supérieures pour leurs nombres de solutions réelles (ou positives). Un autre problème est de construire des systèmes dont le nombre de solutions réelles (ou positives) sont proches de la meilleure borne supérieure connue. Lorsqu'une borne supérieure optimale est bien connue, qu'est ce qu'on peut dire dans le cas où elle est atteinte?Dans cette thèse, nous affinons un résultat de M. Avendaño en démontrant que le nombre de points d'intersection réels d'une droite réelle avec une courbe réelle plane définie par un polynôme avec au plus t monômes est soit infini ou ne dépasse pas $6t -7$. En outre, on montre que notre borne est optimale pour t=3 en utilisant les dessins d'enfant réels de Grothendieck. Cela montre que le nombre maximal de points d'intersection réels d'une droite réelle avec une courbe trinomiale réelle plane est onze.Nous considérons ensuite le problème de l'estimation du nombre maximal de points d'intersection transverses positifs d'une courbe plane trinomiale et d'une courbe plane t-nomiale. T-Y Li, J.-M. Rojas et X. Wang ont montré que ce nombre est borné par 2^t - 2, et récemment P. Koiran, N. Portier et S. Tavenas ont trouvé la borne supérieure 2t^3/3 +5t. Nous fournissons la borne supérieure $ 3*2^(t-2) - 1 qui est optimale pour t = 3 et est la plus petite pour t=4,...,9. Ceci est réalisé en utilisant la notion de dessins d'enfant réels. De plus, nous étudions en détail le cas t = 3 et nous donnons une restriction sur les supports des systèmes atteignant la borne optimale cinq.Un circuit est un ensemble de n+ 2 points dans $mathbb{R}^n$ qui sont minimalement affinement dépendants. Il est connu qu'un système supporté sur un circuit a au plus n+1 solutions positives non dégénérées, et que cette borne est optimale. Nous utilisons les dessins d'enfant réels et le patchwork combinatoire de Viro pour donner une caractérisation complète des circuits supportant des systèmes polynomiaux avec le nombre maximal de solutions positives non dégénérées.Nous considérons des systèmes polynomiaux de deux équations à deux variables avec cinq monômes distincts au total. Ceci est l'un des cas les plus simples où la borne supérieure optimale sur le nombre de solutions positives non dégénérées n'est pas connue. F. Bihan et F. Sottile ont prouvé que cette borne optimale est majorée par quinze. D'autre part, les meilleurs exemples avaient seulement cinq solutions positives non dégénérées.Nous considérons des systèmes polynomiaux comme avant, mais défini sur le corps des séries de Puiseux réelles généralisées et localement convergentes. Les images par l'application de valuation des solutions d'un tel système sont des points d'intersection de deux courbes tropicales planes. En utilisant des intersections non transverses des courbes tropicales planes, on obtient une construction d'un système polynomial réel comme ci-dessus ayant sept solutions positives non dégénérées. / Real polynomial systems are ubiquitous in many areas of pure and applied mathematics. A. Khovanskii provided a fewnomial upper bound on the number of non-degenerate positive solutions of a real polynomial system of $n$ equations in n variables that depends only on the number of monomials appearing in the equations. The latter bound was recently improved by F. Bihan and F. Sottile, but the resulting bound still has room for improvement, even in some simple cases.The aim of this work is to tackle three main problems in Fewnomial theory. Consider a family of real polynomial systems with a given structure (for instance, supports or number of monomials). One problem is to find good upper bounds for their numbers of real (or positive) solutions. Another problem is to construct systems whose numbers of real (or positive) solutions are close to the best known upper bound. When a sharp upper bound is known, what can be said about reaching it?In this thesis, we refine a result by M. Avendaño by proving that the number of real intersection points of a real line with a real plane curve defined by a polynomial with at most t monomials is either infinite or does not exceed 6t -7. Furthermore, we prove that our bound is sharp for t=3 using Grothendieck's real dessins d'enfant. This shows that the maximal number of real intersection points of a real line with a real plane trinomial curve is eleven.We then consider the problem of estimating the maximal number of transversal positive intersection points of a trinomial plane curve and a t-nomial plane curve. T-Y Li, J.-M. Rojas and X. Wang showed that this number is bounded by 2^t-2, and recently P. Koiran, N. Portier and S. Tavenas proved the upper bound 2t^3/3 +5t. We provide the upper bound 3*2^{t-2} - 1 that is sharp for t=3 and is the tightest for t=4,...,9. This is achieved using the notion of real dessins d'enfant. Moreover, we study closely the case t=3 and give a restriction on the supports of systems reaching the sharp bound five.A circuit is a set of n+2 points in mathbb{R}^n that is minimally affinely dependent. It is known that a system supported on a circuit has at most n+1 non-degenerate positive solutions, and that this bound is sharp. We use real dessins d'enfant and Viro's combinatorial patchworking to give a full characterization of circuits supporting polynomial systems with the maximal number of non-degenerate positive solutions.We consider polynomial systems of two equations in two variables with a total of five distinct monomials. This is one of the simplest cases where the sharp upper bound on the number of non-degenerate positive solutions is not known. F. Bihan and F. Sottile proved that this sharp bound is not greater than fifteen. On the other hand, the best examples had only five non-degenerate positive solutions. We consider polynomial systems as before, but defined over the field of real generalized locally convergent Puiseux series. The images by the valuation map of the solutions of such a system are intersection points of two plane tropical curves. Using non-transversal intersections of plane tropical curves, we obtain a construction of a real polynomial system as above having seven non-degenerate positive solutions.
6

Le problème de décompositions de points dans les variétés Jacobiennes / The point decomposition problem in Jacobian varieties

Wallet, Alexandre 26 November 2016 (has links)
Le problème du logarithme discret est une brique fondamentale de nombreux protocoles de communication sécurisée. Son instantiation sur les courbes elliptiques a permis, grâce à la petite taille des opérandes considérées, le déploiement de primitives asymétriques efficaces sur des systèmes embarqués. De nos jours, les cryptosystèmes utilisant des courbes elliptiques, aussi appelées courbes de genre 1, sont déjà intensément utilisés: il est donc impératif de savoir estimer précisément la robustesse de ces systèmes. L'existence d'attaques mathématiques permettant de transférer un problème de logarithme discret elliptique dans un autre type de courbe algébrique, et la nouvelle compétitivité des courbes de genre 2 imposent de ne pas se restreindre à la seule compréhension du problème sur les courbes elliptiques.Dans cette optique, le sujet de cette thèse se concentre sur les attaques algébriques sur les courbes de genre supérieur à 1. Les algorithmes de type calcul d'indice sont en général préférés pour ce genre d'attaque. Ces algorithmes se déroulent en deux phases: la première, appelée phase de récolte, dispose de nombreuses modélisations algébriques dépendant de la courbe ciblée. Le problème sous-jacent revient à savoir décomposer efficacement des points dans la variété Jacobienne de la courbe en somme d'autres points.On propose dans un premier temps une approche par crible pour la phase de récolte, s'adaptant à tous les types de courbes de genre plus grand que 1, et qui est expérimentalement plus efficaces que les méthodes de l'état de l'art. Cette méthode a l'avantage de proposer une implémentation immédiate, et évite les problèmes usuels de gestion des relations obtenues.Ensuite, on se concentre les variantes de calcul d'indice appelées attaques par décomposition, et ciblant les courbes définies sur des extensions de corps. Dans cette situation, la phase de récolte est effectuée par résolution de nombreux systèmes polynomiaux multivariés. On propose une nouvelle approche de modélisation de ces systèmes, en généralisant la notion de polynômes de sommation elliptique à tout les types de courbes algébriques. Pour cela on fait appel à la théorie de l'élimination, tandis que l'aspect pratique est gérée par des méthodes de bases de Gröbner.Enfin, on fournit des algorithmes d'amélioration du processus de résolution des systèmes lorsque la caractéristique du corps de base est paire. Par le biais d'une présentation théorique générale et en utilisant des méthodes de bases de Gröbner, on propose une analyse fine de l'impact de ces améliorations sur la complexité de la résolution. Cette analyse fine, ainsi qu'une implémentation dédiée, nous permettent d'attaquer une courbe de genre 2 satisfaisant des bornes de sécurité réaliste en pratique. / The discrete logarithm problem is a fundamental brick for several protocols for secured communications. Its instantiation over elliptic curves allows the deployment of efficient asymmetric primitives in embedded systems, because of the small size of the parameters considered. Nowadays, elliptic curves cryptosystems are already widely used: it is therefore crucial to precisely understand the hardness of such systems. Because of the existence of mathematical attacks enabling the transfer from an elliptic curve discrete logarithm problem to another algebraic curve, and the upcoming competitivity of genus 2 curves, it is mandatory to study the problem not only for elliptic curves, but for the other curves as well.In this way, this thesis focuses on the algebraic attacks over curves with genus greater than 1. The index calculus family of algorithms is in general preferred for this kind of attacks. Those algorithms run in two phases: the first, called harvesting phase, can be modelled by different algebraic approaches, depending in the targetted curve. The underlying problem amounts to knowing how to decompose efficiently points in the Jacobian variety of the curve into sums of other points.First, we propose a sieving approach to the harvesting, that can be adated to any type of curves with genus greater than 1, and which turns to be experimentally more efficient than state-of-the-art's methods. Moreover, our method allows a close-to-immediate implementation, and avoid complications coming from relations management.Our second focus is on a variant of index calculus called decomposition attack, targetting curves defined over field extensions. In this situation, harvesting is done by solving numerous multivariate polynomial systems. We propose a new approach to this modelling by generalizing the notion of elliptic summation polynomias to any type of algebraic curves. This uses elimination theory, and the computational aspect is handled by Gröbner bases methods.Third, we give algorithms to improve the solving process of the systems arising from a decomposition attacks when the characteristic of the base field is even. By mean of a general theoretical presentation, and using Gröbner bases methods, we give a sharp analysis of the impact of such improvement on the complexity of the resolution process. This sharp analysis together with a dedicated implementation allows us to attack a genus 2 curve satisfying realistic security parameters.
7

Représentations des polynômes, algorithmes et bornes inférieures

Grenet, Bruno 29 November 2012 (has links) (PDF)
La complexité algorithmique est l'étude des ressources nécessaires -- le temps, la mémoire, ... -- pour résoudre un problème de manière algorithmique. Dans ce cadre, la théorie de la complexité algébrique est l'étude de la complexité algorithmique de problèmes de nature algébrique, concernant des polynômes.Dans cette thèse, nous étudions différents aspects de la complexité algébrique. D'une part, nous nous intéressons à l'expressivité des déterminants de matrices comme représentations des polynômes dans le modèle de complexité de Valiant. Nous montrons que les matrices symétriques ont la même expressivité que les matrices quelconques dès que la caractéristique du corps est différente de deux, mais que ce n'est plus le cas en caractéristique deux. Nous construisons également la représentation la plus compacte connue du permanent par un déterminant. D'autre part, nous étudions la complexité algorithmique de problèmes algébriques. Nous montrons que la détection de racines dans un système de n polynômes homogènes à n variables est NP-difficile. En lien avec la question " VP = VNP ? ", version algébrique de " P = NP ? ", nous obtenons une borne inférieure pour le calcul du permanent d'une matrice par un circuit arithmétique, et nous exhibons des liens unissant ce problème et celui du test d'identité polynomiale. Enfin nous fournissons des algorithmes efficaces pour la factorisation des polynômes lacunaires à deux variables.
8

Analyse en stabilité et synthèse de lois de commande pour des systèmes polynomiaux saturants

Valmorbida, Giorgio 08 July 2010 (has links) (PDF)
La classe des systèmes non-linéaires dont la dynamique est définie par un champ de vecteurs polynomial est étudié. Des modèles polynomiaux peuvent représenter différents systèmes réels ou bien definir des approximations plus riches que des modèles linéaires pour des systèmes non-linéaires différentiables. Des techniques de programmation semi-définie développées récemment ont rendu possible l'étude de cette classe de systèmes avec des outils numériques. Le problème d'analyse en stabilité locale est résolu via des conditions basées sur la positivité de polynomes. Dans le cadre de la synthèse de lois de commande nous proposons un changement de variables linéaire pour traiter la synthèse de lois de commande non-linéaire qui garantissent la stabilité locale. Les ensembles définissant des estimations de la région d'attraction, définis par des courbes de niveau de la fonction de Lyapunov pour le système, sont également donnés par des fonctions polynomiales.
9

Analytic Combinatorics in Several Variables : Effective Asymptotics and Lattice Path Enumeration / Combinatoire analytique en plusieurs variables : asymptotique efficace et énumération de chemin de treillis

Melczer, Stephen 13 June 2017 (has links)
La combinatoire analytique étudie le comportement asymptotique des suites à travers les propriétés analytiques de leurs fonctions génératrices. Ce domaine a conduit au développement d’outils profonds et puissants avec de nombreuses applications. Au delà de la théorie univariée désormais classique, des travaux récents en combinatoire analytique en plusieurs variables (ACSV) ont montré comment calculer le comportement asymptotique d’une grande classe de fonctions différentiellement finies:les diagonales de fractions rationnelles. Cette thèse examine les méthodes de l’ACSV du point de vue du calcul formel, développe des algorithmes rigoureux et donne les premiers résultats de complexité dans ce domaine sous des hypothèses très faibles. En outre, cette thèse donne plusieurs nouvelles applications de l’ACSV à l’énumération des marches sur des réseaux restreintes à certaines régions: elle apporte la preuve de plusieurs conjectures ouvertes sur les comportements asymptotiques de telles marches,et une étude détaillée de modèles de marche sur des réseaux avec des étapes pondérées. / The field of analytic combinatorics, which studies the asymptotic behaviour ofsequences through analytic properties of their generating functions, has led to thedevelopment of deep and powerful tools with applications across mathematics and thenatural sciences. In addition to the now classical univariate theory, recent work in thestudy of analytic combinatorics in several variables (ACSV) has shown how to deriveasymptotics for the coefficients of certain D-finite functions represented by diagonals ofmultivariate rational functions. This thesis examines the methods of ACSV from acomputer algebra viewpoint, developing rigorous algorithms and giving the firstcomplexity results in this area under conditions which are broadly satisfied.Furthermore, this thesis gives several new applications of ACSV to the enumeration oflattice walks restricted to certain regions. In addition to proving several openconjectures on the asymptotics of such walks, a detailed study of lattice walk modelswith weighted steps is undertaken.
10

Régularisation du calcul de bases de Gröbner pour des systèmes avec poids et déterminantiels, et application en imagerie médicale / Regularisation of Gröbner basis computations for weighted and determinantal systems, and application to medical imagery

Verron, Thibaut 26 September 2016 (has links)
La résolution de systèmes polynomiaux est un problème aux multiples applications, et les bases de Gröbner sont un outil important dans ce cadre. Il est connu que de nombreux systèmes issus d'applications présentent une structure supplémentaire par rapport à des systèmes arbitraires, et que ces structures peuvent souvent être exploitées pour faciliter le calcul de bases de Gröbner.Dans cette thèse, on s'intéresse à deux exemples de telles structures, pour différentes applications. Tout d'abord, on étudie les systèmes homogènes avec poids, qui sont homogènes si on calcule le degré en affectant un poids à chaque variable. Cette structure apparaît naturellement dans de nombreuses applications, dont un problème de cryptographie (logarithme discret). On montre comment les algorithmes existants, efficaces pour les polynômes homogènes, peuvent être adaptés au cas avec poids, avec des bornes de complexité générique divisées par un facteur polynomial en le produit des poids.Par ailleurs, on étudie un problème de classification de racines réelles pour des variétés définies par des déterminants. Ce problème a une application directe en théorie du contrôle, pour l'optimisation de contraste de l'imagerie à résonance magnétique. Ce système particulier s'avère insoluble avec les stratégies générales pour la classification. On montre comment ces stratégies peuvent tirer profit de la structure déterminantielle du système, et on illustre ce procédé en apportant des réponses aux questions posées par le problème d'optimisation de contraste. / Polynomial system solving is a problem with numerous applications, and Gröbner bases are an important tool in this context. Previous studies have shown that systèmes arising in applications usually exhibit more structure than arbitrary systems, and that these structures can be used to make computing Gröbner bases easier.In this thesis, we consider two examples of such structures. First, we study weighted homogeneous systems, which are homogeneous if we give to each variable an arbitrary degree. This structure appears naturally in many applications, including a cryptographical problem (discrete logarithm). We show how existing algorithms, which are efficient for homogeneous systems, can be adapted to a weighted setting, and generically, we show that their complexity bounds can be divided by a factor polynomial in the product of the weights.Then we consider a real roots classification problem for varieties defined by determinants. This problem has a direct application in control theory, for contrast optimization in magnetic resonance imagery. This specific system appears to be out of reach of existing algorithms. We show how these algorithms can benefit from the determinantal structure of the system, and as an illustration, we answer the questions from the application to contrast optimization.

Page generated in 0.4569 seconds