• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • 1
  • Tagged with
  • 8
  • 8
  • 7
  • 6
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mathematical analysis and dynamical systems : modeling Highland malaria in western Kenya / Analyse mathématique et modélisation dynamique des systèmes de paludisme dans les Highlands à l?ouest du Kenya

Kagunda, Joséphine 23 November 2012 (has links)
L'objectif de cette thèse est de modéliser la transmission du paludisme dans la région montagneuse de l'ouest du Kenya, en se servant des outils de systèmes dynamiques. Nous considérons deux modèles mathématiques. Le premier prend en compte une susceptibilité et une infectivité différentielle dans les métapopulations, et le second un taux de saturation des repas sanguins dans la population des moustiques. Dans le premier modèle, nous considérons plusieurs écosystèmes identifiés comme zones sensibles dans la région montagneuse de l'ouest du Kenya. Dans ce modèle, ces zones sensibles sont considérées comme nos différents patchs. Les populations de chaque patch sont divisées en deux : les enfants et les adultes. Le modèle nous permet d'évaluer le rôle de l'hétérogénéité de l'écosystème et la persistance de l'épidémie dans la région, due à la structuration d'âge. Nous prenons en compte la susceptibilité et l'infectivité différentielle afin d'étendre le modèle d'un patch en un modèle à plusieurs patchs. Après avoir subdivisé la région en n zones sensibles, nous faisons une analyse mathématique du modèle obtenu. Pour effectuer cette analyse, nous utilisons la théorie des systèmes triangulaires, des systèmes dynamiques monotones, des systèmes dynamiques non linéaires anti-monotones et le principe d'invariance de LaSalle. Un des éléments très utilisés dans notre analyse qui est un concept clé en épidémiologie, est le taux de reproduction de base, très souvent noté Ro. Cette quantité, sans dimension, est le nombre moyen de cas secondaires, engendré par un individu infectieux typique durant sa période d'infectiosité, quand il est introduit dans une population constituée entièrement de susceptibles. L'existence et la stabilité du point d'équilibre sans maladie (DFE) sont établies et nous prouvons que le DFE est globalement asymptotiquement stable lorsque Ro<1. Lorsque Ro>1, le modèle admet un point d'équilibre endémique qui est globalement asymptotiquement stable. L'analyse de notre modèle montre que la structuration d'âge réduit l'ampleur de l'infection. En utilisant les données relevées, nous faisons quelques simulations numériques afin de montrer l'impact de la métapopulation et de la structuration d'âge sur le taux de reproduction de base. Dans la seconde partie, nous formulons un modèle de paludisme avec saturation du taux d'alimentation des moustiques qui nous conduit à une incidence non linéaire. Nous démontrons que DFE est globalement asymptotiquement stable si Ro<1. Lorsque Ro>1, il existe un unique point d'équilibre endémique qui est globalement asymptotiquement stable. Des simulations numériques sont faites afin d'illustrer l'impact de la saturation d'alimentation sur le taux de reproduction de base / The objective of this thesis is to model highland malaria in western Kenya using dynamical systems. Two mathematical models are formulated ; one, on differentiated susceptibility and differentiated infectivity in a metapopulation setting with age structure, the other, a saturated vector feeding rate model with disease induced deaths and varying host and vector populations. In the first model, we consider the different ecosystems identified as malaria hotspots in the western Kenya highlands and consider the ecosystems as different patches. The population in each patch is classified as, either child or, adult. The model will aid in examining the role of ecosystem heterogeneity and age structure to the persistent malaria epidemics in the highlands. We formulate the differentiated susceptibility and infectivity model that extend to multiple patches the well known epidemiological models in one patch. Classifying the hot spots as n patches, we give its mathematical analysis using the theory of triangular system, monotone non-linear dynamical systems, and Lyapunov-Lasalle invariance principle techniques. Key to our analysis is the definition of a reproductive number, Ro, the number of new infections caused by one individual in an otherwise fully susceptible population throughout the duration of the infectious period. The existence and stability of disease-free and endemic equilibrium is established. We prove that the disease free state of the systems is globally asymptotically stable when the basic reproduction number Ro<1, and when Ro>1 an endemic equilibrium is established which is locally and globally asymptotically stable. The model shows that the age structuring reduces the magnitude of infection. Using relevant data we did some simulation, to demonstrate the role played by metapopulation and age structuring on the incidence and Ro. In the second part we formulate a model for malaria with saturation on the vector feeding rates that lead to a nonlinear function in the infection term. The vector feeding rate is assumed, as in the predator prey models, to rise linearly as a function of the host-vector ratio until it reaches a threshold Qv, after which the vector feeds freely at its desired rate. The two populations are variable and drive malaria transmission, such that when the vectors are fewer than hosts, the rate of feeding is determined by the vectors feeding desire, whereas, when the hosts are more than the vectors, the feeding rate is limited by host availability and other feeding sources may have to be sought by the vector. Malaria induced deaths are introduced in the host population, while the vector is assumed to survive with the parasite till its death. We prove that the Disease Free Equilibrium is locally and globally asymptotically stable if Ro<1 and when Ro>1, an endemic equilibrium emerges, which is unique, locally and globally asymptotically stable. The role of the saturated mosquito feeding rate is explored with simulation showing the crucial role it plays especially on the basic reproduction number
2

Stabilité et commande de systèmes décrits par des multimodèles : Approche LMI

Chadli, Mohammed 09 December 2002 (has links) (PDF)
Cette thèse concerne l'analyse de la stabilité et la synthèse de lois de commande pour les multimodèles. La démarche proposée est exclusivement basée sur la deuxième méthode de Lyapunov et sa formulation en termes d'Inégalités Matricielles Linéaires (LMI). L'étude que nous avons menée est organisée autour de deux axes : le premier traite l'analyse de la stabilité par des fonctions de Lyapunov quadratiques, le deuxième fait appel aux fonctions de Lyapunov non quadratiques. Dans le volet consacré à la méthode quadratique, nous avons développé des conditions suffisantes de stabilité en nous appuyant sur les propriétés des M-matrices. La conception de multiobservateurs dans le cas de variables de décision non mesurables est abordée ainsi que celle de multiobservateurs à entrées inconnues. Une loi de commande statique non linéaire basée sur le retour de sortie est également proposée. Deux techniques de synthèse de cette loi de commande sont exposées. La première est basée sur une formulation convexe sous forme de LMI. La deuxième technique, quant à elle, est basée sur la transformation du problème (non convexe) de synthèse en un problème de complémentarité sur le cône. Pour réduire le pessimisme de la méthode quadratique, deux types de fonction de Lyapunov non quadratiques sont considérées : les fonctions dites polyquadratiques et les fonctions quadratiques par morceaux. En utilisant la procédure S, les conditions de stabilité obtenues sont formulées sous forme de LMI. Ces résultats ont abouti à réduire considérablement le conservatisme de la méthode quadratique et permettent d'envisager des extensions intéressantes concernant la commande par retour d'état ou de sortie ainsi que l'estimation d'état des multimodèles. Les conditions obtenues étant bilinéaires par rapport aux variables de synthèse, elles sont résolues en utilisant des algorithmes de linéarisation ou à l'aide de formulation LMI sous contrainte de rang.
3

Analyse en stabilité et synthèse de lois de commande pour des systèmes polynomiaux saturants

Valmorbida, Giorgio 08 July 2010 (has links) (PDF)
La classe des systèmes non-linéaires dont la dynamique est définie par un champ de vecteurs polynomial est étudié. Des modèles polynomiaux peuvent représenter différents systèmes réels ou bien definir des approximations plus riches que des modèles linéaires pour des systèmes non-linéaires différentiables. Des techniques de programmation semi-définie développées récemment ont rendu possible l'étude de cette classe de systèmes avec des outils numériques. Le problème d'analyse en stabilité locale est résolu via des conditions basées sur la positivité de polynomes. Dans le cadre de la synthèse de lois de commande nous proposons un changement de variables linéaire pour traiter la synthèse de lois de commande non-linéaire qui garantissent la stabilité locale. Les ensembles définissant des estimations de la région d'attraction, définis par des courbes de niveau de la fonction de Lyapunov pour le système, sont également donnés par des fonctions polynomiales.
4

Systèmes différentiels et algébriques du type Riccati issus de la théorie des jeux

Cherfi, Lynda 19 December 2005 (has links) (PDF)
Ce travail porte sur l'étude des systèmes différentiels et algébriques du type Riccati issus de la théorie des jeux différentiels linéaires quadratiques. Ces systèmes dérivent de l'équilibre de Nash et de la commande optimale sous une contrainte différentielle stochastique. Ils sont le principal obstacle à franchir afin d'obtenir les stratégies optimales des joueurs. Dans le cas des systèmes différentiels, nous avons construit une méthode analytique pour le recherche d'une paire de solutions. Cette méthode s'appuie sur des changements de base de la matrice décrivant l'équilibre de Nash. Dans le cas des systèmes algébriques, nous avons proposé des itérations du type Lyapunov et des itérations du type Riccati. Des propriétés des solutions itératives ainsi que des conditions suffisantes de convergence de ces itérations sont également établies. Les résultats numériques obtenus avec ces deux types d'itérations sont présentées et comparés. Ces résultats démontrent une plus grande performance des itérations du type Riccati relativement aux itérations du type Lyapunov.
5

Etudes de quelques modèles épidémiologiques : application à la transmission du virus de l'hépatite B en Afrique subsaharienne (cas du Sénégal) / Study of some epidemiological models : a case study of the hepatitis B's virus transmission in sub-Saharan Africa (Senegal)

Fall, Abdoul Aziz 18 March 2010 (has links)
L'objectif de cette étude est la modélisation, la validation, l'analyse mathématique et la simulation de modèles de transmission de l'hépatite B en Afrique en général et au Sénégal en particulier. Nous proposons de nouveaux modèles bases sur les connaissances actuelles de l'histoire naturelle de la transmission du virus de l'hépatite B. Ainsi, nous présentons deux modèles de la transmission du VHB1, un modèle sans transmission verticale et un autre ou la transmission verticale de la maladie est prise en compte. Ce second modèle est justifié par la controverse, en ce qui concerne l'incidence des transmissions verticale ou périnatale au niveau de la zone Afrique ; entre d'une part, l'Organisation Mondiale de la Santé et d'autre part les spécialistes de l'hépatite B au Sénégal. Ces modèles, nous ont conduit à étudier des modèles épidémiologiques avec une diérentiabilitée, au niveau des susceptibles, et progression de stade pour les infectieux. Nous obtenons une analyse complète de la stabilité de ces modèles à l'aide des techniques de Lyapunov suivant la valeur du taux de reproduction de base R0. Ce qui nous conduit à l'étude d'un modèle épidémiologique beaucoup plus général qui englobe ceux proposés pour la modélisation de la transmission du virus de l'hépatite B. Nous illustrons à la fin de ce travail ces modèles par des simulations numériques. Ces dernières sont faites à partir de nos modèles confrontés aux données recueillies du programme de lutte contre l'épidémie de l'hépatite B au Sénégal et dans la littérature. Elles permettrons l'effet de la transmission verticale/périnatale du virus de l'hépatite B sur les politiques de Santé Publique / We propose new models based on the state of art and the epidemiology currently known from the transmission of the hepatitis B virus. Thus, we present two models of the transmission of Hepatitis Bvirus, a model without vertical transmission and another in which the vertical transmission of the disease is taken into account, This second model is justified by the controversy, with regard to the incidence of the vertical and perinatal transmission of the virus in some parts of Africa ; between the World Health Organization on one hand and hepatitis B's specialists in Senegal on the other hand. These models helped us to analyse epidemiological models with a differential susceptibility of the population, and stagged progression of infectious. We present a thorough analysis of the stability of the models using the Lyapunov techniques and obtain the basic reproduction ratio, R0 which allows into the study of general epidemiological models including those proposed for the transmission of the hepatitis B virus. Numerical simulations are done to illustrate the behaviour of the model, using data collected during the campaign against epidemic hepatitis B in Senegal and from published literature. These models enable the evaluation of the incidence of the vertical and perinatal transmission of the hepatitis B virus on the policies of Public Health
6

Modélisation et contrôle de la transmission du virus de la maladie de Newcastle dans les élevages aviaires familiaux de Madagascar / Modeling and control of the transmission of Newcastle disease virus in Malagasy smallholder chicken farms

Mraidi, Ramzi 17 June 2014 (has links)
La maladie de Newcastle (MN) grève lourdement les productions aviaires malgaches, essentielles à l'alimentation et à l'économie familiales. La MN est une dominante pathologique en l'absence de vaccination généralisée. L'objectif de cette thèse est la modélisation, la validation et l'analyse mathématique de modèles de transmission du virus de la MN (VMN) dans les systèmes avicoles villageois en général et à Madagascar en particulier. Nous proposons de nouveaux modèles basés sur les connaissances actuelles de l'histoire naturelle de la transmission du VMN. Ainsi, nous présentons deux modèles mathématiques à compartiments de la transmission du VMN dans une population de poules : un premier modèle avec transmission environnementale et un deuxième modèle où la vaccination contre la maladie est prise en compte. Nous présentons une analyse complète de la stabilité de ces modèles à l'aide des techniques de Lyapunov suivant la valeur du taux de reproduction de base R0. Le travail s'est appuyé sur des enquêtes de terrain pour comprendre les pratiques de vaccination actuelles à Madagascar. / Newcastle disease (ND) severely harms Malagasy bird productions, mainly uses to food and family economy. ND is a pathological dominant without general vaccination. The objective of this thesis is modelling the transmission of ND virus (NDV) in smallholder chicken farms in general and, Madagascar in particular. We propose new models based on the state of art and the epidemiology currently known from the transmission of the NDV. Thus, we present two models of the transmission of NDV: a first model with environmental transmission and a second model in which imperfect vaccination of chickens is considered. We present a thorough analysis of the stability of the models using the Lyapunov techniques and obtain the basic reproduction ratio R0. This work is based on field surveys to understand the current vaccination practices in Madagascar.
7

Analyse en stabilité et synthèse de lois de commande pour des systèmes polynomiaux saturants / Stability analysis and controller synthesis for saturating polynomial systems

Valmorbida, Giorgio 08 July 2010 (has links)
La classe des systèmes non-linéaires dont la dynamique est définie par un champ de vecteurs polynomial est étudié. Des modèles polynomiaux peuvent représenter différents systèmes réels ou bien définir des approximations plus riches que des modèles linéaires pour des systèmes non-linéaires différentiables. Des techniques de programmation semi-définie développées récemment ont rendu possible l'étude de cette classe de systèmes avec des outils numériques. Le problème d'analyse en stabilité locale est résolu via des conditions basées sur la positivité de polynomes. Dans le cadre de la synthèse de lois de commande nous proposons un changement de variables linéaire pour traiter la synthèse de lois de commande non-linéaire qui garantissent la stabilité locale. Les ensembles définissant des estimations de la région d'attraction, définis par des courbes de niveau de la fonction de Lyapunov pour le système, sont également donnés par des fonctions polynomiales / We study the class of nonlinear dynamical systems which vector field is defined by polynomial functions. A large set of systems can be modeled using such class of functions. Tests for stability are formulated as semidefinite programming problems by considering positive polinomials to belong to the class of Sum of Squares polynomials. Polynomial control law gains are computed based on a linear change of coordinates and guarantee the local stability of the closed-loop system. Lyapunov theory is then applied in order to obtain estimates of the region of attraction for stable equilibrium points. Such estimates are given by level sets of polynomial positive functions
8

Conception d'observateurs pour différentes classes de systèmes à retards non linéaires / Observer Design for Different Classes of Nonlinear Delayed Systems.

Kahelras, Mohamed 18 January 2019 (has links)
Le retard est un phénomène naturel présent dans la majorité des systèmes physiques et dans les applications d’ingénierie, ainsi, les systèmes à retard ont été un domaine de recherche très actif en automatique durant les 60 dernières années. La conception d’observateur est un des sujets les plus importants qui a été étudié, ceci est dû à l’importance des observateurs en automatique et dans les systèmes de commande en absence de capteur pour mesurer une variable. Dans ce travail, l’objectif principal est de concevoir des observateurs pour différentes classes de systèmes à retard avec un retard arbitrairement large, et ce en utilisant différentes approches. Dans la première partie de cette thèse, la conception d’un observateur a été réalisée pour une classe de systèmes non linéaires triangulaires avec une sortie échantillonnée et un retard arbitraire. Une l’autre difficulté majeure avec cette classe de systèmes est le fait que la matrice d’état dépend du signal de sortie non-retardé qui est immesurable. Un nouvel observateur en chaine, composé de sous-observateurs en série est conçu pour compenser les retards arbitrairement larges. Dans la seconde partie de ce travail, un nouvel observateur a été conçu pour un autre type de systèmes non linéaires triangulaires, où le retard a été considéré, cette fois-ci, comme une équation aux dérivées partielles de type hyperbolique du premier ordre. La transformation inverse en backstepping et le concept de l’observateur en chaine ont été utilisés lors de la conception de cet observateur afin d’assurer son efficacité en cas de grands retards. Dans la dernière partie de cette thèse, la conception d’un nouvel observateur a été réalisée pour un type de système modélisé par des équations paraboliques non linéaires où les mesures sont issues d’un nombre fini de points du domaine spatial. Cet observateur est constitué d’une série de sous-observateurs en chaine. Chaque sous-observateur compense une fraction du retard global. L'analyse de la stabilité des systèmes d’erreur a été fondée sur différentes fonctionnelles Lyapunov-Krasovskii. Par ailleurs, différents instruments mathématiques ont été employés au cours des différentes preuves présentées. Les résultats de simulation ont été présentés dans le but de confirmer l'exactitude des résultats théoriques / Time-delay is a natural phenomenon that is present in most physical systems and engineering applications, thus, delay systems have been an active area of research in control engineering for more than 60 years. Observer design is one of the most important subject that has been dealt with, this is due to the importance of observers in control engineering systems not only when sensing is not sufficient but also when a sensing reliability is needed. In this work, the main goal was to design observers for different classes of nonlinear delayed systems with an arbitrary large delay, using different approaches. In the first part, the problem of observer design is addressed for a class of triangular nonlinear systems with not necessarily small delay and sampled output measurements. Another major difficulty with this class of systems is the fact that the state matrix is dependent on the un-delayed output signal which is not accessible to measurement. A new chain observer, composed of sub-observers in series, is designed to compensate for output sampling and arbitrary large delays.In the second part of this work, another kind of triangular nonlinear delayed systems was considered, where this time the delay was considered as a first order hyperbolic partial differential equation. The inverse backstepping transformation was invoked and a chain observer was developed to ensure its effectiveness in case of large delays. Finally, a new observer was designed for a class of nonlinear parabolic partial differential equations under point measurements, in the case of large delays. The observer was composed of several chained sub-observers. Each sub-observer compensates a fraction of the global delay. The stability analyses of the error systems were based on different Lyapunov-Krasovskii functionals. Also different mathematical tools have been used in order to prove the results. Simulation results were presented to confirm the accuracy of the theoretical results

Page generated in 0.0834 seconds