• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 33
  • 6
  • 5
  • 5
  • 1
  • 1
  • 1
  • Tagged with
  • 56
  • 56
  • 29
  • 12
  • 12
  • 10
  • 9
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design of RFID antennas in metal environment with broad circular polarization bandwidth

Chou, Chien-Chang 20 June 2006 (has links)
In this thesis, we propose tag and reader antennas which are suitable when attended to metal material for Radio Frequency Identification (RFID) systems. For tag antenna design, we use microstrip antenna with ground plane to reduce the metal effect. In order to match the impedance of different IC chip, some parameter of the tag antenna are designed and described, which can be used to adjust the impedance of tag antenna. For reader antenna design, circularly polarized patch antenna can be achieved by using dual-feeding technique with U-shaped aperture-coupled, where the dual feeds with a phase shift and equal input power amplitude are provided by a Wilkinson power divider. Therefore, a good right-hand circular polarization is obtained and a 3-dB CP bandwidth of the designed reader antenna is greater than 30 ¢H. 900 We then design dual-band antenna and broad CP bandwidth antennas. In the dual-band design, two resonant paths are utilized to cover 915 and 2450 MHz bands that can be used for RFID systems in UHF and ISM bands. In the broad CP bandwidth design, a square slot antenna is used with a cross patch placed at the center of the square slot. Two orthogonal resonant modes with phase difference and equal input power amplitude can be excited by choosing the proper dimensions of the cross patch. A 3-dB CP bandwidth of the designed circularly polarized antenna is greater than 12¢H.
2

SYSTEM MODEL FOR A LOW DATA RATE FULL DUPLEX OPTICAL COMMUNICATIONS LINK BETWEEN EARTH AND LEO

Hazzard, D. A., MacCannell, J. A., Lee, G., Selves, E. R., Moore, D., Payne, J. A., Garrett, C. D., Dahlstrom, N., Shay, T. M. 10 1900 (has links)
International Telemetering Conference Proceedings / October 25-28, 1999 / Riviera Hotel and Convention Center, Las Vegas, Nevada / We present a novel communications link concept. This system offers the potential of low data rate full-duplex communications between earth and LEO. We will present a detailed link model for this system.
3

Circular Polarization Spectroscopy: Disorientation Cross-Section in the <sup>133</sup>Cs 6p<sup>2</sup> P<sub>3/2</sub> Level by Using Two-Photon Two-Color Nano-Second Pulsed Laser

Marhatta, Ramesh 26 July 2007 (has links)
No description available.
4

A sensitive spectropolarimeter for the measurement of circular polarization of luminescence

Al-Akir, Ziad I. January 1990 (has links)
No description available.
5

A COMPARISON OF CIRCULAR POLARIZATION WITH DUAL POLARIZATION DIVERSITY IN THE PRESENCE OF MULTIPATH

Sulecki, Joan M., Lerner, Theodore 10 1900 (has links)
International Telemetering Conference Proceedings / October 13-16, 1986 / Riviera Hotel, Las Vegas, Nevada / A major factor in the performance of a Telemetry System over the sea is the effect of multipath. The reflected signal from the surface of the sea may, in general, add to or subtract from the direct signal, and may therefore lead to severe fading and possible loss of useful signal. The multipath is a function of the sea state and the polarization of the signal. In order to reduce the effect of multipath on performance, a dual polarization diversity system is being built for the Airborne Telemetry Relay System for the Gulf Range. An analysis of the performance of the dual polarization diversity system in the presence of multipath for different sea states, different reflection angles, and different initial polarization angles is presented. For comparison, a similar analysis is presented for a circular polarization receiving antenna system.
6

Dual-band reflectarrays using microstrip ring elements and their applications with various feeding arrangements

Han, Chul Min 30 October 2006 (has links)
In recent years there has been a growing demand for reduced mass, small launch volume, and, at the same time, high-gain large-aperture antenna systems in modern space-borne applications. This dissertation introduces new techniques for dual-band reflectarray antennas to meet these requirements. A series of developments is presented to show the dual-band capability of the reflectarray. A novel microstrip ring structure has been developed to achieve circular polarization (CP). A C/Ka dual-band front-fed reflectarray antenna has been designed to demonstrate the dual-band circular polarized operation. The proposed ring structure provides many advantages of compact size, more freedom in the selection of element spacing, less blockage between circuit layers, and broader CP bandwidth as compared to the patches. An X/Ka dual-band offset-fed reflectarray is made of thin membranes, with their thickness equal to 0.0508 mm in both layers. Several degrading effects of thin substrates are discussed. To overcome these problems, a new configuration is developed by inserting empty spaces of the proper thickness below both the X and Ka band membranes. More than 50 % efficiencies are achieved at both frequency ranges, and the proposed scheme is expected to be a good candidate to meet the demand for future inflatable antenna systems. An X/Ka dual-band microstrip reflectarray with circular polarization has also been constructed using thin membranes and a Cassegrain offset-fed configuration. It is believed that this is the first Cassegrain reflectarray ever developed. This antenna has a 0.75-meter-diameter aperture and uses a metallic sub-reflector and angular-rotated annular ring elements. It achieved a measured 3 dB gain bandwidth of 700 MHz at Xband and 1.5 GHz at Ka-band, as well as a CP bandwidth (3 dB axial ratio) of more than 700 MHz at X-band and more than 2 GHz at Ka-band. The measured peak efficiencies are 49.8 % at X-band and 48. 2 % at Ka-band. In summary, this dissertation presents a series of new research developments to support the dual-band operation of the reflectarray antenna. The results of this work are currently being implemented onto a 3-meter reflectarray with inflatable structures at the Jet Propulsion Laboratory and are planned for other applications such as an 8-meter inflatable reflectarray in the near future.
7

A New Polarization-Reconfigurable Antenna for 5G Wireless Communications

Al-Yasir, Yasir I.A., Ojaroudi Parchin, Naser, Elfergani, Issa T., Abd-Alhameed, Raed, Noras, James M., Rodriguez, Jonathan, Al-jzari, A., Hammed, W.I. 22 August 2018 (has links)
Yes / This paper presents a circular polarization reconfigurable antenna for 5G applications, which is compact in size and has good axial ratio and frequency response. The proposed microstrip antenna is designed on a FR-4 substrate with a relative dielectric constant of 4.3 and has a maximum size of 30×30 mm2 with 50 Ω coaxial probe feeding. This design has two PIN diode switches controlling reconfiguration between right hand circular polarization (RHCP) and left hand circular polarization (LHCP). To achieve reconfigurability, a C-slot rectangular patch antenna with truncated corner techniques is employed by cutting off two corners on the radiating patch. The proposed antenna has been simulated using CST microwave studio software: it has 3.35-3.77 GHz and 3.4-3.72 GHz bands for both states of reconfiguration, and each is suitable for 5G applications with a good axial ratio of less than 1.8 dB and good gain of 4.8 dB for both modes of operation. / Innovation programme under grant agreement H2020-MSCA-ITN-2016 SECRET-722424, UK Engineering and Physical Sciences Research Council (EPSRC) under grant EP/E022936/1.
8

A Compact Wideband Circularly Polarized Planar Monopole Antenna with Axial Ratio Bandwidth Entirely Encompassing the Antenna Bandwidth

Alnahwi, F.M., Al-Yasir, Yasir I.A., Ali, N.T., Gharbia, Ibrahim, See, C.H., Abd-Alhameed, Raed 05 August 2022 (has links)
Yes / The antenna presented in this study is a compact wideband monopole with wideband circular polarization that can be used across the whole antenna bandwidth. A rectangular C-shaped patch is partially covered by a ground plane in the proposed planar monopole antenna. Inserting a rectangular stub to the ground plane, etching a slit at the antenna patch, and adding a semicircular stub at the top of the antenna feed line increase the antenna impedance bandwidth (BW) and axial ratio bandwidth (ARBW). An FR4 substrate with overall dimensions of 25 mm×25 mm×1.6 mm is used to create the antenna. The antenna's observed impedance BW is 70% (4.55 GHz in the 4.3-8.85 GHz band), while the measured broadside ARBW is improved to a value of 82.2 percent (5.3 GHz along the range 3.8-9.1 GHz). The impedance BW is perfectly covered by the ARBW; hence the antenna can be considered circularly polarized throughout its operational spectrum. Within the antenna BW, the measured gain is greater than 1.5 dB.
9

Compact circularly polarized slot-ring antenna and microstrip bandpass filter using triangular open-loop resonators

Farooqui, Muhammad Fahad 25 April 2007 (has links)
In this thesis two different research topics are undertaken, both in the area of compact RF/microwave circuits design. The first topic involves the design of a compact circularly polarized (CP) slot-ring antenna. A study of several compact CP microstrip and slotline antennas reported in the past has been carried out. In this research, a method of reducing the size of a printed slot-ring antenna is proposed. The reduction in size is achieved by introducing meandered-slot sections in the ring. Circular polarization is achieved by introducing an asymmetry, also a meandered-slot section, and feeding the antenna at an angle of 45o from the asymmetry using a microstrip feed line. The minimum axial ratio of 0.4 dB is obtained at 2.46 GHz, which is the operating frequency of the antenna. The size of the proposed antenna is reduced by about 50% compared to a conventional CP slot-ring antenna and it displays a CP bandwidth of about 2.5%. The simulated and measured results are presented, and they are in good agreement. The small size of the antenna makes it very suitable for use in modern RF/microwave wireless systems which require compact, low cost, and high performance circuits. Moreover, its CP behavior makes it more attractive for applications such as satellite communications. The second topic in the thesis involves the design of a compact microstrip bandpass filter using triangular open-loop resonators. A new compact three-pole microstrip bandpass filter using four triangular open-loop resonators is presented. A fourth resonator is placed to provide cross-coupling in the structure which gives a better skirt rejection. The measured pass-band center frequency is 2.85 GHz. The filter demonstrates about 7% bandwidth with insertion loss of less than 1 dB in the passband, a return loss of greater than 15 dB and out-of-band rejection of greater than 30 dB. The simulated and measured results are in good agreement. The proposed filter is very attractive for use in modern wireless systems which require bandpass filters having compact size, low insertion loss, high selectivity, and good out-of-band rejection.
10

Evolution and Persistence of Circular and Linear Polarization in Scattering Environments

van der Laan, John David January 2015 (has links)
Sensing in scattering environments, such as fog and dust, poses a serious challenge for all optical systems and is important for many critical surveillance applications. The use of polarized light, specifically circularly polarized light, has shown great promise for improving detection range and sensing in highly scattering, real-world environments. While the potential impact to application is significant, the optical science and sensing community lacks data on broad wavelength and environmental parameters where circularly polarized light outperforms linearly polarized light, increasing detection range and signal persistence. In this dissertation I quantify, through simulation and experimental results, the advantage of circularly polarized light in laboratory and real-world scattering environments - focusing on circularly polarized light's superior persistence in these environments. I present new and unique contributions to the study of polarized light in both isotropic (Rayleigh regime) and forward-scattering environments, showing circular polarization's superior persistence increases detection range for real-world environments over broad wavelength and particle size regimes. Utilizing polarization-tracking Monte Carlo simulations for varying particle size, wavelength, and refractive index, I quantify when circular polarization outperforms linear polarization in maintaining the illuminating polarization state for large optical thicknesses, persisting to longer ranges. I identify many real-world environments with particle sizes of radiation fog, advection fog, and Sahara dust where circular polarization outperforms linear polarization over broad wavelength ranges in the infrared spectrum. This enhancement with circular polarization can be exploited to improve sensing range and target detection in obscurant environments that are important in many critical surveillance applications. Conversely, I also identify a few environmental configurations where linear polarization outperforms circular polarization. However, circular polarization's response is generally larger and over broader wavelength ranges in the infrared regime for real-world scattering environments. Experiments were conducted for both 1) isotopically-scattering (Rayleigh regime) environments and 2) forward-scattering environments using polystyrene microspheres with well-defined diameters. These measurements demonstrated that in the forward-scattering environments, circular polarization persists through increasing optical thickness better than linear polarization. Variations in persistence were investigated as a function of collection geometry, angular field of view, and collection area. Persistence for both linear and circular polarization was found to be more susceptible to collection geometry, specifically increased collection area, in the isotropically-scattering (Rayleigh regime) environment. Similarly, linear polarization in the forward-scattering environments is dependent upon changes in collection geometry. Significantly, circular polarization's response is nearly unaffected by variations of both field of view and collection area for the forward-scattering environments. Circular polarization proves to be not only generally better in persistence but also more tolerant of variations in angular collection and collection area compared to linear polarization, making it ideal and flexible for use in optical sensing systems in scattering environments. Finally, I present simulation results that show the evolution of linear and circularly polarized light as it scatters throughout both isotropic (Rayleigh regime) and forward-scattering environments as a function of scattering event. Circularly polarized light persists through a larger number of scattering events longer than linearly polarized light for all forward-scattering environments; but not for scattering in the Rayleigh regime. Circular polarization's increased persistence occurs for both forward and backscattered light. The evolution of the polarization states as they propagate through the various environments are illustrated on the Poincaré sphere after successive scattering events. This work displays individual scattering events as well as a cumulative, measureable result, in an intuitive manner. Throughout this dissertation I quantify the polarization persistence and memory of circularly polarized light in real-world scattering environments over broad wavelength, particle size, and collection-geometry parameter spaces; and for the first time, detail the evolution and modification of both circularly and linearly polarized states through isotropic and forward-scattering environments. These results show how circular polarization can extend range and sensing capability in surveillance sensing applications in real-world scattering environments.

Page generated in 0.1096 seconds