• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 10
  • 10
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dual-band reflectarrays using microstrip ring elements and their applications with various feeding arrangements

Han, Chul Min 30 October 2006 (has links)
In recent years there has been a growing demand for reduced mass, small launch volume, and, at the same time, high-gain large-aperture antenna systems in modern space-borne applications. This dissertation introduces new techniques for dual-band reflectarray antennas to meet these requirements. A series of developments is presented to show the dual-band capability of the reflectarray. A novel microstrip ring structure has been developed to achieve circular polarization (CP). A C/Ka dual-band front-fed reflectarray antenna has been designed to demonstrate the dual-band circular polarized operation. The proposed ring structure provides many advantages of compact size, more freedom in the selection of element spacing, less blockage between circuit layers, and broader CP bandwidth as compared to the patches. An X/Ka dual-band offset-fed reflectarray is made of thin membranes, with their thickness equal to 0.0508 mm in both layers. Several degrading effects of thin substrates are discussed. To overcome these problems, a new configuration is developed by inserting empty spaces of the proper thickness below both the X and Ka band membranes. More than 50 % efficiencies are achieved at both frequency ranges, and the proposed scheme is expected to be a good candidate to meet the demand for future inflatable antenna systems. An X/Ka dual-band microstrip reflectarray with circular polarization has also been constructed using thin membranes and a Cassegrain offset-fed configuration. It is believed that this is the first Cassegrain reflectarray ever developed. This antenna has a 0.75-meter-diameter aperture and uses a metallic sub-reflector and angular-rotated annular ring elements. It achieved a measured 3 dB gain bandwidth of 700 MHz at Xband and 1.5 GHz at Ka-band, as well as a CP bandwidth (3 dB axial ratio) of more than 700 MHz at X-band and more than 2 GHz at Ka-band. The measured peak efficiencies are 49.8 % at X-band and 48. 2 % at Ka-band. In summary, this dissertation presents a series of new research developments to support the dual-band operation of the reflectarray antenna. The results of this work are currently being implemented onto a 3-meter reflectarray with inflatable structures at the Jet Propulsion Laboratory and are planned for other applications such as an 8-meter inflatable reflectarray in the near future.
2

せん断変位を受ける平面形および円筒形膜面におけるシワ生成メカニズム / Wrinkle generation mechanism in flat and cylindrical membranes undergoing shear deformation

PETROVIC, Mario 23 March 2015 (has links)
Kyoto University (京都大学) / 0048 / 新制・課程博士 / 博士(工学) / 甲第18947号 / 工博第3989号 / 新制||工||1614 / 31898 / 京都大学大学院工学研究科航空宇宙工学専攻 / (主査)教授 泉田 啓, 教授 琵琶 志朗, 教授 西脇 眞二 / 学位規則第4条第1項該当
3

Wrinkle generation mechanism in flat and cylindrical membranes undergoing shear deformation / せん断変位を受ける平面形および円筒形膜面におけるシワ生成メカニズム

PETROVIC, Mario 23 March 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第18947号 / 工博第3989号 / 新制||工||1614(附属図書館) / 31898 / 京都大学大学院工学研究科航空宇宙工学専攻 / (主査)教授 泉田 啓, 教授 琵琶 志朗, 教授 西脇 眞二 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
4

Active Dynamic Analysis and Vibration Control of Gossamer Structures Using Smart Materials

Ruggiero, Eric John 08 May 2002 (has links)
Increasing costs for space shuttle missions translate to smaller, lighter, and more flexible satellites that maintain or improve current dynamic requirements. This is especially true for optical systems and surfaces. Lightweight, inflatable structures, otherwise known as gossamer structures, are smaller, lighter, and more flexible than current satellite technology. Unfortunately, little research has been performed investigating cost effective and feasible methods of dynamic analysis and control of these structures due to their inherent, non-linear dynamic properties. Gossamer spacecraft have the potential of introducing lenses and membrane arrays in orbit on the order of 25 m in diameter. With such huge structures in space, imaging resolution and communication transmissibility will correspondingly increase in orders of magnitude. A daunting problem facing gossamer spacecraft is their highly flexible nature. Previous attempts at ground testing have produced only localized deformation of the structure's skin rather than excitation of the global (entire structure's) modes. Unfortunately, the global modes are necessary for model parameter verification. The motivation of this research is to find an effective and repeatable methodology for obtaining the dynamic response characteristics of a flexible, inflatable structure. By obtaining the dynamic response characteristics, a suitable control technique may be developed to effectively control the structure's vibration. Smart materials can be used for both active dynamic analysis as well as active control. In particular, piezoelectric materials, which demonstrate electro-mechanical coupling, are able to sense vibration and consequently can be integrated into a control scheme to reduce such vibration. Using smart materials to develop a vibration analysis and control algorithm for a gossamer space structure will fulfill the current requirements of space satellite systems. Smart materials will help spawn the next generation of space satellite technology. / Master of Science
5

Macro-Fiber Composites for Sensing, Actuation and Power Generation

Sodano, Henry Angelo 14 August 2003 (has links)
The research presented in this thesis uses the macro-fiber composite (MFC) actuator that was recently developed at the NASA Langley Research Center for two major themes, sensing and actuation for vibration control, and power harvesting. The MFC is constructed using piezofibers embedded in an epoxy matrix and coated with Kapton skin. The construction process of the MFC affords it vast advantages over the traditionally used piezoceramic material. The MFC is extremely flexible, allowing it to be bonded to structures that have curved surface without fear of accidental breakage or additional surface treatment as is the case with monolithic piezoceramic materials. Additionally the MFC uses interdigitated electrodes that capitalize on the higher d33 piezoelectric coupling coefficient that allow it to produce higher forces and strain than typical monolithic piezoceramic materials. The research presented in this thesis investigates some potential applications for the MFC as well as topics in power harvesting. This first study performed was to determine if the MFC is capable of being used as a sensor for structural vibration. The MFC was incorporated into a self-sensing circuit and used to provide collocated control of an aluminum beam. It was found that the MFC makes a very accurate sensor and was able to provide the beam with over 80% vibration suppression at its second resonant frequency. Following this work, the MFC was used as both a sensor and actuator to apply multiple-input-multiple-output vibration control of an inflated satellite component. The control system used a positive position feedback (PPF) controller and two pairs of sensors and actuators in order to provide global vibration suppression of an inflated torus. The experiments found that the MFC and control system was very effective at attenuating the vibration of the first mode but ineffective at higher modes. It was found the positioning of the sensors and actuators on the structure contributed heavily to the controller's performance at higher modes. A discussion of the reasons for the controller's ineffectiveness is supply and a solution using self-sensing techniques for collocated vibration suppression was investigated. Subsequent to the research in vibration sensing and control, the ability to use piezoelectric materials to convert ambient vibration into usable electrical energy was tested and quantified. First, a model of a power harvesting beam is developed using variational methods and is validated on a composite structure containing four separate piezoelectric wafers. It is shown that the model can accurately predict the power generated from the vibration of a cantilever beam regardless of the load resistance or excitation frequency. The damping effects of power harvesting on a structure are also demonstrated and discussed using the model. Next, the ability of the piezoelectric material to recharge a battery and a quantification of the power generated are investigated. After determining that the rechargeable battery is compatible with the power generated through the piezoelectric effect, the MFC was compared with the traditional monolithic PZT for use as a power harvesting material. It was found that the MFC produces a very low current, making it less efficient than the PZT material and unable to charge batteries because of their need for relatively large current. Due to the MFC being incapable of charging batteries, only the PZT was used to charge batteries and the charge times for several nickel metal hydride batteries ranging from 40 to 1000mAh are supplied. / Master of Science
6

GEOMETRIC CONTROL OF INFLATABLE SURFACES

Scherrer, Isaac John 01 January 2012 (has links)
High precision inflatable surfaces were introduced when NASA created the ECHO 1 Balloon in 1960. The experiment proved that inflatable structures were a feasible alternative to their rigid counterparts for high precision applications. Today inflatable structures are being used in aviation and aerospace applications and the benefits of using such structures are being recognized. Inflatable structures used in high precision structures require the inflatable surfaces to have controllable and predictable geometries. Many applications such as solar sails and radar reflectors require the surface of such structures to have a uniform surfaces as such surfaces improve the efficiency of the structure. In the study presented, tests were conducted to determine which combination of factors affect surface flatness on a triangular test article. Factors tested include, three boundary conditions, two force loadings, and two fabric orientations. In total, twelve tests were conducted and results showed that which force loading and fabric orientations used greatly affected the Root Mean Square (RMS) of the surface. It was determined that using the triangular clamp along with 00 fabric orientation and high force loading provided the best results.
7

Cellular Landscapes

Petrova, Siyana January 2018 (has links)
Global climate change has been a point of concern over the past century. Some of its major consequences, which are already present, include melting of glaciers, increasing sea water level, temperature rise and excessive acidity of sea water. The natural fluctuations harm the ecology and the biological species will face increased extinction risk. The raise of the water level will cause sinking and gradually vanishing of the land’s surface as a natural resource and place for habitation. It has been estimated that if Greenland ice sheet melts completely, the water would be enough to cover the land with up to 6 meters. The project investigates the consequences of the rising sea levels due to the climate change and what impact this will have on the topography and the natural landscape. It proposes a utopian vision for a large scale strategy for agriculture which does not rely on the use of land. The structure comprises of inflatable spherical modules, which float on the water surface. It is a dynamic and expandable system, with minimal environmental footprint, designed for low-lying areas vulnerable to flooding and land shortage. The more the land surface is vanishing due to the increasing sea levels, the more the structure will stretch to compensate for the loss of farmland.
8

Analysis, Design, and Experimentation of Beam-Like Structures

Miglani, Jitish 23 March 2022 (has links)
Significant research is ongoing in the world to meet the needs of social and environmental crisis by harnessing wind and solar energy at high altitudes. One such approach is the use of an inflatable High Altitude Aerial Platform (HAAP). In the presented work, such periodically supported beam-like structures are analyzed using various mathematical models primarily modeling them as an equivalent beam using one-dimensional theories. The Euler-Bernoulli Theory (EBT) has been widely used for high aspect ratio beams, whereas the First Order Shear Deformation Theory (FSDT), or the Timoshenko beam theory, considers transverse shear effects and hence is superior in modeling low aspect ratio beams. First, an Isogeometric Analysis (IGA) is conducted using both FSDT and EBT to predict thermal buckling of periodically supported composite beams. Isogeometric analysis overcomes the limitations of the Gibbs phenomenon at discontinuities for a periodically supported beam using a higher order textit{k}-refinement. Next, an Integral Equation Approach (IEA) is implemented using EBT to obtain natural frequencies and buckling loads of periodically supported non-prismatic beams. Ill-conditioning errors were alleviated using admissible orthogonal Chebychev polynomials to obtain higher modes. We also present the prediction of the onset of flutter instability for metal plate and inflatable wing shaped foam test articles analyzed using finite element analysis (FEA). FEA updating based on modal testing and by conducting a geometrically nonlinear analysis resulted in a good agreement against the experiment tests. Furthermore, a nonlinear co-rotational large displacement/rotation FEA including the effects of the pressure as a follower forces was implemented to predict deformations of an inflatable structures. The developed FEA based tool namely Structural Analysis of Inflatables using FEA (SAIF) was compared with the experiments and available literature. It is concluded that the validity of the developed tool depends on the flexibility of the beam, which further depends upon the length of the beam and the bending rigidity of the beam. Inflatable structures analyzed with materials with high value of the Young's modulus and low to medium slenderness ratio tend to perform better against the experimental data. This is attributed to the presence of wrinkling and/or the Brazier effect (ovalling of the cross section) for flexible beams. The presented work has applications in programmable buckling, uncertainty quantification, and design of futuristic HAAP models to help face the upcoming environmental crises and meet the societal needs. / Doctor of Philosophy / In the future, developed countries are projected to face an increase in renewable energy demands due to environmental crises and increasing societal needs for energy due to urbanization. Wind energy, a renewable source, has received increasing attention. Wind farms require large land space and offshore wind energy harvesting is prone to unstable environments. Crosswind kite power is one of the promising and emerging fields where one can harvest energy from the wind farm inaccessible and apparently endless winds at high altitudes. In this dissertation, we present analysis and experiments on investigating complex structures, such as inflatable high altitude aerial platforms (HAAP) by using various mathematical models, primarily modeling them as an equivalent beam using one-dimensional theories. We investigate the effects of internal pressure on such structures, which unlike many other types of applied loads, follow the direction of the deflections. When supported on multiple supports, these structures are more efficient in terms of increased payload capacity due to a better distribution of loads, despite the increased weight penalty. To name a few, there are direct applications of periodic supports in design of bridges and railway sleepers. To avoid violent vibrations or failure, we also investigate the effect of multiple supports on the so-called natural frequency, vibration frequency under absence of applied loads, and buckling loads, instabilities under compression, of such beam-like structures. The presented work will aid in the design of futuristic HAAP models to help face the upcoming environmental crises and meet the energy demands of society due to urbanization.
9

Development and Applications of a Flat Triangular Element for Thin Laminated Shells

Mohan, P. 12 December 1997 (has links)
Finite element analysis of laminated shells using a three-noded flat triangular shell element is presented. The flat shell element is obtained by combining the Discrete Kirchhoff Theory (DKT) plate bending element and a membrane element similar to the Allman element, but derived from the Linear Strain Triangular (LST) element. Though this combination has been employed in the literature for linear static analysis of laminated plates, the results presented are not adequate to ascertain that the element would perform well in the case of static and dynamic analysis of general shells. The element is first thoroughly tested for linear static analysis of laminated plates and shells and is extended for free vibration, thermal, and geometrically nonlinear analysis. The major drawback of the DKT plate bending element is that the transverse displacement is not explicitly defined within the interior of the element. Hence obtaining the consistent mass matrix or the derivatives of the transverse displacement that are required for forming the geometric stiffness matrix is not straight forward. This problem is alleviated by borrowing shape functions from other similar elements or using simple displacement fields. In the present research, free vibration analysis is performed both by using a lumped mass matrix and a so called consistent mass matrix, obtained by borrowing shape functions from an existing element, in order to compare the performance of the two methods. The geometrically nonlinear analysis is performed using an updated Lagrangian formulation employing Green strain and Second Piola-Kirchhoff (PK2) stress measures. A linear displacement field is used for the transverse displacement in order to compute the derivatives of the transverse displacement that are required to compute the geometric stiffness or the initial stress matrix. Several numerical examples are solved to demonstrate the accuracy of the formulation for both small and large rotation analysis of laminated plates and shells. The results are compared with those available in the existing literature and those obtained using the commercial finite element package ABAQUS and are found to be in good agreement. The element is employed for two main applications involving large flexible structures. The first application is the control of thermal deformations of a spherical mirror segment, which is a segment of a multi-segmented primary mirror used in a space telescope. The feasibility of controlling the surface distortions of the mirror segment due to arbitrary thermal fields, using discrete and distributed actuators, is studied. This kind of study was required for the design of a multi-segmented primary mirror of a next generation space telescope. The second application is the analysis of an inflatable structure, being considered by the US Army for housing vehicles and personnel. The tent structure is made up of membranes supported by arches stiffened by internal pressure. The updated Lagrangian formulation of the flat shell element has been developed primarily for the nonlinear analysis of the tent structure, since such a structure is expected to undergo large deformations and rotations under the action of environmental loads like the wind and snow loads. The wind load is modeled as a nonuniform pressure load and the snow load as lumped concentrated loads. Since the direction of the pressure load is assumed to be normal to the current configuration of the structure, it changes as the structure undergoes deformation. This is called the follower action. As a result, the pressure load is a function of the displacements and hence contributes to the tangent stiffness matrix in the case of geometrically nonlinear analysis. The thermal load also contributes to the system tangent stiffness matrix. In the case of the thermal load this contribution is similar to the initial stress matrix and hence no additional effort is required to compute this contribution. In the case of the pressure load, this contribution (called the pressure stiffness) is in general unsymmetric but can be systematically derived from the principle of virtual work. The follower effects of the pressure load have been included in the updated Lagrangian formulation of the flat shell element and have been validated using standard examples in the literature involving deformation-dependent pressure loads. The element can be used to obtain the nonlinear response of the tent structure under wind and snow loads. / Ph. D.
10

A DESIGN PATHFINDER WITH MATERIAL CORRELATION POINTS FOR INFLATABLE SYSTEMS

Fulcher, Jared T 01 January 2014 (has links)
The incorporation of inflatable structures into aerospace systems can produce significant advantages in stowed volume to mechanical effectiveness and overall weight. Many applications of these ultra-lightweight systems are designed to precisely control internal or external surfaces, or both, to achieve desired performance. The modeling of these structures becomes complex due to the material nonlinearities inherent to the majority of construction materials used in inflatable structures. Furthermore, accurately modeling the response and behavior of the interfacing boundaries that are common to many inflatable systems will lead to better understanding of the entire class of structures. The research presented involved using nonlinear finite element simulations correlated with photogrammetry testing to develop a procedure for defining material properties for commercially available polyurethane-coated woven nylon fabric, which is representative of coated materials that have been proven materials for use in many inflatable systems. Further, the new material model was used to design and develop an inflatable pathfinder system which employs only internal pressure to control an assembly of internal membranes. This canonical inflatable system will be used for exploration and development of general understanding of efficient design methodology and analysis of future systems. Canonical structures are incorporated into the design of the phased pathfinder system to allow for more universal insight. Nonlinear finite element simulations were performed to evaluate the effect of various boundary conditions, loading configurations, and material orientations on the geometric precision of geometries representing typical internal/external surfaces commonly incorporated into inflatable pathfinder system. The response of the inflatable system to possible damage was also studied using nonlinear finite element simulations. Development of a correlated material model for analysis of the inflatable pathfinder system has improved the efficiency of design and analysis techniques of future inflatable structures.

Page generated in 0.0892 seconds