Spelling suggestions: "subject:"circular match antenna"" "subject:"circular batch antenna""
1 |
Design and Simulation of Microstrip Phase Array Antenna using ADSKhattak, Muhammad Kamran, Siddique, Osama, Ahmed, Waqar January 2011 (has links)
The aim of this project is to design a microstrip phase array antenna in ADS (Advance Design System) Momentum. The resonant frequency of which is 10 GHz. Two circular patches with a radius of 5.83 mm each are used in designing the array antenna. RT-DURROID 5880 is used as a substrate for this microstrip patch array design. These circular patches are excited using coaxial probe feed and transmission lines of particular lengths and widths. These transmission lines perfectly match the impedance of the circular patches. Various parameters, for example the S-parameters, two dimensional and three dimensional radiation patterns, excitation models, gain, directivity and efficiency of the designed antenna are obtained from ADS Momentum.
|
2 |
A New Beamforming Approach Using 60 GHz Antenna Arrays for Multi–Beams 5G ApplicationsAl-Sadoon, M.A.G., Patwary, M.N., Zahedi, Y., Ojaroudi Parchin, Naser, Aldelemy, Ahmad, Abd-Alhameed, Raed 26 May 2022 (has links)
Yes / Recent studies and research have centred on new solutions in different elements and stages
to the increasing energy and data rate demands for the fifth generation and beyond (B5G). Based on
a new-efficient digital beamforming approach for 5G wireless communication networks, this work
offers a compact-size circular patch antenna operating at 60 GHz and covering a 4 GHz spectrum
bandwidth. Massive Multiple Input Multiple Output (M–MIMO) and beamforming technology
build and simulate an active multiple beams antenna system. Thirty-two linear and sixty-four
planar antenna array configurations are modelled and constructed to work as base stations for 5G
mobile communication networks. Furthermore, a new beamforming approach called Projection
Noise Correlation Matrix (PNCM) is presented to compute and optimise the fed weights of the array
elements. The key idea of the PNCM method is to sample a portion of the measured noise correlation
matrix uniformly in order to provide the best representation of the entire measured matrix. The
sampled data will then be utilised to build a projected matrix using the pseudoinverse approach in
order to determine the best fit solution for a system and prevent any potential singularities caused
by the matrix inversion process. The PNCM is a low-complexity method since it avoids eigenvalue
decomposition and computing the entire matrix inversion procedure and does not require including
signal and interference correlation matrices in the weight optimisation process. The suggested
approach is compared to three standard beamforming methods based on an intensive Monte Carlo
simulation to demonstrate its advantage. The experiment results reveal that the proposed method
delivers the best Signal to Interference Ratio (SIR) augmentation among the compared beamformers
|
3 |
A Modular Approach to Design and Implementation of an Active GNSS AntennaHecktor, Ulrik January 2022 (has links)
This masters thesis describes the design, implementation and testing of an active antenna intended for use with global navigation satellite systems. The active antenna is composed of two major parts, a dual-band circular patch antenna and a dual-band low-noise amplifier. To streamline the design process, a modular solution was adopted. This enabled the functionality of every part in the signal path to be verified before the final active antenna was designed. A practical method to develop dual-band stacked circular patch antennas, along with a systematic way to tune the resonant frequencies and impedance of the antenna, is also presented. Testing of the antenna in realistic scenarios shows that the active antenna performs as expected and predicted by simulations. / <p>Examensarbetet är utfört vid Institutionen för teknik och naturvetenskap (ITN) vid Tekniska fakulteten, Linköpings universitet</p>
|
Page generated in 0.0599 seconds