• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modélisation des phénomènes physiques intervenant au cours de l’émission électronique sous haute tension sous vide / Numerical Modeling of Physical Phenomena during Electron Emission in a Vacuum

Seznec, Benjamin 08 December 2017 (has links)
Que ce soit dans l‟étude du claquage sous vide ou dans les sources d‟électrons par effet de champ, l‟émission électronique est un phénomène physique essentiel qui a lieu et devient dominante à la cathode sous haute tension. Dans le cas du claquage sous vide, la première étape de ce mécanisme est l‟émission d‟électrons au sommet de rugosités présentes sur la surface. Celles-ci peuvent être représentées sous la forme de pointes. Dans le cas des sources d‟électrons, l‟émission des électrons peut se faire au niveau d‟émetteurs qui eux aussi peuvent être décrits sous la forme de « pointes » distribués de manière ordonnée sur la surface. Un modèle numérique décrivant l‟émission thermo-ionique assistée par effet de champ a été développé dans le cas d‟une pointe axisymétrique et dont le traitement peut être réduit en 2D.Il s‟agit là d‟un problème multi-physique couplé nécessitant la résolution de problèmes de différentes natures : quantiques, électrostatique, électrocinétique et thermique. A partir de ce modèle, l‟étude de l‟émission et du claquage au sommet d‟une pointe soumise à une pulse électrique de l‟ordre de la nanoseconde a été étudiée. L‟étude de l‟émission électronique sur une cathode soumise à la haute tension et illuminé par un laser picoseconde a ensuite été faite en développant un modèle qui décrit notamment le chauffage du métal en régime hors équilibre. Enfin, dans le cas du claquage sous vide, la modélisation de l‟interaction entre des microparticules, présente dans l‟espace inter-électrodes,et de l‟émission électronique provenant du sommet d‟une rugosité a été realisée. Différents régimes de trajectoires de la microparticules ont été observée suivant le courant appliqué au sommet de la rugosité. / Electron emission in vacuum from a cathode at high voltage is an important physical phenomenon for the study of vacuum breakdown or electron sources. In the vacuum breakdown, the first step of this mechanism is electron emission at the top of the microprotrusions on the surface. Microprotrusions or emitters in electron sources have the shape of a tip. A numerical model describing the thermo-field emission has been developed for a 2D axisymmetric tip. The problem is multi-physical and it is necessary to solve problems of different natures: quantum mechanics, electrostatic, electric current and thermal heating. With this model, it is possibleto study electron emission and vacuumbreakdown when nanosecond high voltage pulses are applied. Furthermore, the study of electron emission when a picosecond pulsed laser illuminates a high voltage cathode has been performed. A new model has been developped to describe the photo-electric effect and a two-temperature model has been implemented to describe the heating of the cathode in a non-equilibrium regime. Finally, the modeling of the interaction between microparticles and electron emission from microprotusions has been realised, in order to study the breakdown voltage. Different trajectories of microparticles have been identified based on the results, depending on the electron emission current.
2

Etude de l’émission cathodique sous vide en présence d'un champ électrique intense et des paramètres physiques gouvernant son intensité / Study of cathodic emission in vacuum at high electric field and the physical parameters governing its intensity

Almousa Almaksour, Khaled 27 January 2014 (has links)
L’émission électronique par effet de champ est un domaine qui concerne de nombreuses applications techniques. Dans ce travail, nous avons réalisé une étude essentiellement expérimentale des différents paramètres susceptibles d’avoir une influence sur l’émission électronique. En première partie, nous exposons les résultats obtenus pour un champ électrique homogène correspondant aux faibles intensités de courant. Le rôle de la distance inter-électrodes à champ constant et l’influence de la rugosité de surface sur l’émission électronique ont été étudiés. Nous discutons la méthode classique de Fowler-Nordheim utilisée pour le dépouillement des mesures en y portant un regard critique. Un modèle simple visant à prendre en compte l’échauffement des sites émetteurs est proposé. La seconde partie concerne l’effet de l’injection de gaz sur l’émission électronique, effet qui se traduit par une diminution du courant émis quand on augmente la pression de 10⁻⁶ Pa à 10⁻² Pa à champ macroscopique constant. Nous exposons des résultats montrant un effet de seuil concernant l’apparition de l’effet du gaz sur l’émission électronique. Nous présentons également des résultats pour différents matériaux de cathode et pour différents gaz (He, H₂, N₂, Ar). Une réversibilité de cet effet est montrée après le pompage pour redescendre à 10⁻⁵ Pa. La décroissance de courant par effet de gaz est interprétée par la diminution de la valeur du facteur d’accroissement local du champ électrique (β) au niveau des émetteurs à cause du bombardement de ces sites par les ions créés à leur proximité. Un calcul du flux d’ions bombardant un site émissif a permis d’estimer le temps nécessaire pour modifier un émetteur de façon cohérente avec les observations expérimentales. La théorie de la migration des atomes en surface de l’électrode en présence d’un champ électrique est proposée pour expliquer la réversibilité de l’effet de gaz observée qui est, selon cette théorie, liée à l’augmentation de la valeur de β au niveau des émetteurs. / Field electronic emission is a domain which concerns numerous different technical applications. In this work, we have taken an essentially experimental approach to study various parameters having influence on field emission. In the first part of the thesis, we have described the results obtained with a homogeneous electric field with relatively weak field emission. The role of the inter-electrode distance at constants field as well as that of the cathode surface roughness on field emission are studied. The classical method of Fowler-Norheim was then used for the analysis of the measurements. A simple model aiming to take into account the effect of the heating of the emission sites is then proposed. The second part of the theses concerns the effect of the injection of gas on the field emission; this effect being to significantly reduce emission intensity when the gas pressure is raised from 10⁻⁶ to 10⁻² Pa at constant field. A threshold value of emission intensity is shown to be necessary for the observation of this gas effect. The effect of different gas types (He, H₂, N₂, Ar) and cathode materials are also described. The gas effect is shown to be reversible upon lowering of the gas pressure to 10⁻⁵ Pa. The reduction in current is interpreted by a lowering of the field enhancement factor (β) of emission sites by ionic bombardment by ions created locally (within distances on the order of microns) near the cathode surface. A calculation of the flux of bombarding ions is used to estimate the time necessary to modify an emission site in a way corresponding to the observations. The phenomenon of surface migration in the presence of intense electric field is then proposed to explain the reversibility of the gas effect, increasing the local field enhancement factor.
3

Etude de l'émission cathodique sous vide en présence d'un champ électrique intense et des paramètres physiques gouvernant son intensité

Almousa Almaksour, Khaled 27 January 2014 (has links) (PDF)
L'émission électronique par effet de champ est un domaine qui concerne de nombreuses applications techniques. Dans ce travail, nous avons réalisé une étude essentiellement expérimentale des différents paramètres susceptibles d'avoir une influence sur l'émission électronique. En première partie, nous exposons les résultats obtenus pour un champ électrique homogène correspondant aux faibles intensités de courant. Le rôle de la distance inter-électrodes à champ constant et l'influence de la rugosité de surface sur l'émission électronique ont été étudiés. Nous discutons la méthode classique de Fowler-Nordheim utilisée pour le dépouillement des mesures en y portant un regard critique. Un modèle simple visant à prendre en compte l'échauffement des sites émetteurs est proposé. La seconde partie concerne l'effet de l'injection de gaz sur l'émission électronique, effet qui se traduit par une diminution du courant émis quand on augmente la pression de 10⁻⁶ Pa à 10⁻² Pa à champ macroscopique constant. Nous exposons des résultats montrant un effet de seuil concernant l'apparition de l'effet du gaz sur l'émission électronique. Nous présentons également des résultats pour différents matériaux de cathode et pour différents gaz (He, H₂, N₂, Ar). Une réversibilité de cet effet est montrée après le pompage pour redescendre à 10⁻⁵ Pa. La décroissance de courant par effet de gaz est interprétée par la diminution de la valeur du facteur d'accroissement local du champ électrique (β) au niveau des émetteurs à cause du bombardement de ces sites par les ions créés à leur proximité. Un calcul du flux d'ions bombardant un site émissif a permis d'estimer le temps nécessaire pour modifier un émetteur de façon cohérente avec les observations expérimentales. La théorie de la migration des atomes en surface de l'électrode en présence d'un champ électrique est proposée pour expliquer la réversibilité de l'effet de gaz observée qui est, selon cette théorie, liée à l'augmentation de la valeur de β au niveau des émetteurs.

Page generated in 0.0674 seconds