Spelling suggestions: "subject:"clarence colliery"" "subject:"clarence collier""
1 |
Best practice mine water management at a coal mining operation in the Blue MountainsCohen, Daniel, University of Western Sydney, College of Science, Technology and Environment, School of Engineering and Industrial Design January 2002 (has links)
This study covers the following aspects of mine water management at the Clarence Colliery, located at the headwaters of the Wollangambe River, N.S.W. The Wollangambe River flows through the World Heritage listed areas of the Blue Mountains and Wollemi National Parks. 1. Quantification of the impact of discharge of treated mine water on the Wollangambe River, through analysis of sediment metal concentrations. 2. Investigation of the possible sources and causes of acid mine drainage within the mine. 3. Review of the current treatment process employed at the mine, as well as a review of other possible treatment options for avoidance or treatment of acid mine drainage. 4. Recommendation of a strategy for improving the process of mine water management at the colliery. The study reveals problems discovered from the investigation and describes the findings and recommendations. / Master of Engineering (Hons.)
|
2 |
Co-disposal of rejects from coal and sand mining operations in the Blue Mountains : a feasibility studyGosling, Christine, University of Western Sydney, School of Civic Engineering and Environment January 1999 (has links)
This thesis presents details of investigations into the potential for co-disposal of the two rejects from Clarence Colliery and Kable's Transport Sand Mine. Column experiments were undertaken to simulate field conditions. The experiment consisted of: 1/. creating the required co-disposal arrangement and structure in containers 2/. infiltrating water through each container and measuring the rates of infiltration and overflow 3/. measuring the chemical properties of the leachate water. Geotechnical tests of co-disposal pile stability were undertaken using a specially constructed shear box. Results of this study suggest the co-disposal of course coal washery reject from Clarence Colliery with clay tailings from Kable's Transport Sand Mine is a feasible option for managing the generation of acetic drainage. It is recommended that field trials comprise layers of coal reject and clay tailings in a 9:1 ratio. Layering the coal reject with clay tailings creates a semi-permeable barrier which acts to restrict water percolation through the reject as well as reacting with the leachate to increase the leachate pH and adsorb metals / Master of Engineering (Hons)
|
Page generated in 0.0561 seconds