• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 5
  • 4
  • 2
  • Tagged with
  • 29
  • 29
  • 11
  • 10
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Algebra versus topology in mapping class groups /

Margalit, Dan. January 2003 (has links)
Thesis (Ph. D.)--University of Chicago, Department of Mathematics, June 2003. / Includes bibliographical references. Also available on the Internet.
2

The Structure of the 2-Sylow Subgroups of the Ideal Class Groups of Imaginary Bicyclic Biquadratic Fields

Ranalli, Ramona Renee 10 December 1997 (has links)
In this dissertation class groups of imaginary bicyclic biquadratic fields are considered. In chapter 1 we develop a method for determining the structure of the 2-class group of K. In chapters 3, 4, and 5 this method is applied to determine all imaginary bicyclic biquadratic extensions of Q with class number 4, 8, and 16, as well as to determine the specific structure of each. / Ph. D.
3

Geometry of numbers, class group statistics and free path lengths

Holmin, Samuel January 2015 (has links)
This thesis contains four papers, where the first two are in the area of geometry of numbers, the third is about class group statistics and the fourth is about free path lengths. A general theme throughout the thesis is lattice points and convex bodies. In Paper A we give an asymptotic expression for the number of integer matrices with primitive row vectors and a given nonzero determinant, such that the Euclidean matrix norm is less than a given large number. We also investigate the density of matrices with primitive rows in the space of matrices with a given determinant, and determine its asymptotics for large determinants. In Paper B we prove a sharp bound for the remainder term of the number of lattice points inside a ball, when averaging over a compact set of (not necessarily unimodular) lattices, in dimensions two and three. We also prove that such a bound cannot hold if one averages over the space of all lattices. In Paper C, we give a conjectural asymptotic formula for the number of imaginary quadratic fields with class number h, for any odd h, and a conjectural asymptotic formula for the number of imaginary quadratic fields with class group isomorphic to G, for any finite abelian p-group G where p is an odd prime. In support of our conjectures we have computed these quantities, assuming the generalized Riemann hypothesis and with the aid of a supercomputer, for all odd h up to a million and all abelian p-groups of order up to a million, thus producing a large list of “missing class groups.” The numerical evidence matches quite well with our conjectures. In Paper D, we consider the distribution of free path lengths, or the distance between consecutive bounces of random particles in a rectangular box. If each particle travels a distance R, then, as R → ∞ the free path lengths coincides with the distribution of the length of the intersection of a random line with the box (for a natural ensemble of random lines) and we determine the mean value of the path lengths. Moreover, we give an explicit formula for the probability density function in dimension two and three. In dimension two we also consider a closely related model where each particle is allowed to bounce N times, as N → ∞, and give an explicit formula for its probability density function. / <p>QC 20151204</p>
4

The nonexistence of certain free pro-p extensions and capitulation in a family of dihedral extensions of Q /

Hubbard, David, January 1996 (has links)
Thesis (Ph. D.)--University of Washington, 1996. / Vita. Includes bibliographical references (leaves [47]-48).
5

Class groups of ZZ-extensions and solvable automorphism groups of algebraic function fields /

D'Mello, Joseph Gerard January 1982 (has links)
No description available.
6

Koszulness of Torelli Lie algebras

São João, José January 2023 (has links)
No description available.
7

On the 16-rank of class groups of quadratic number fields / Sur le 16-rang des groupes des classes de corps de nombres quadratiques

Milovic, Djordjo 04 July 2016 (has links)
Nous démontrons deux nouveaux résultats de densité à propos du 16-rang des groupes des classes de corps de nombres quadratiques. Le premier des deux est que le groupe des classes de Q(sqrt{-p}) a un élément d'ordre 16 pour un quart des nombres premiers p qui sont de la forme a^2+c^4 avec c pair. Le deuxième est que le groupe des classes de Q(sqrt{-2p}) a un élément d'ordre 16 pour un huitième des nombres premiers p=-1 (mod 4). Ces résultats de densité sont intéressants pour plusieurs raisons. D'abord, ils sont les premiers résultats non triviaux de densité sur le 16-rang des groupes des classes dans une famille de corps de nombres quadratiques. Deuxièmement, ils prouvent une instance des conjectures de Cohen et Lenstra. Troisièmement, leurs preuves impliquent de nouvelles applications des cribles développés par Friedlander et Iwaniec. Quatrièmement, nous donnons une description explicite du sous-corps du corps de classes de Hilbert de degré 8 de Q(sqrt{-p}) lorsque p est un nombre premier de la forme a^2+c^4 avec c pair; l'absence d'une telle description explicite pour le sous-corps du corps de classes de Hilbert de degré 8 de Q(sqrt{d}) est le frein principal à l'amélioration des estimations de la densité des discriminants positifs d pour lesquels l'équation de Pell négative x^2-dy^2=-1 est résoluble. Dans le cas du deuxième résultat, nous donnons une description explicite d'un élément d'ordre 4 dans le groupe des classes de Q(sqrt{-2p}) et on calcule son symbole d'Artin dans le sous-corps du corps de classes de Hilbert de degré 4 de Q(sqrt{-2p}), généralisant ainsi un résultat de Leonard et Williams. Enfin, nous démontrons un très bon terme d'erreur pour une fonction de comptage des nombres premiers qui est liée au 16-rang du groupe des classes de Q(sqrt{-2p}), donnant ainsi des indications fortes contre une conjecture de Cohn et Lagarias que le 16-rang est contrôlé par un critère de type Chebotarev. / We prove two new density results about 16-ranks of class groups of quadratic number fields. The first of the two is that the class group of Q(sqrt{-p}) has an element of order 16 for one-fourth of prime numbers p that are of the form a^2+c^4 with c even. The second is that the class group of Q(sqrt{-2p}) has an element of order 16 for one-eighth of prime numbers p=-1 (mod 4). These density results are interesting for several reasons. First, they are the first non-trivial density results about the 16-rank of class groups in a family of quadratic number fields. Second, they prove an instance of the Cohen-Lenstra conjectures. Third, both of their proofs involve new applications of powerful sieving techniques developed by Friedlander and Iwaniec. Fourth, we give an explicit description of the 8-Hilbert class field of Q(sqrt{-p}) whenever p is a prime number of the form a^2+c^4 with c even; the lack of such an explicit description for the 8-Hilbert class field of Q(sqrt{d}) is the main obstacle to improving the estimates for the density of positive discriminants d for which the negative Pell equation x^2-dy^2=-1 is solvable. In case of the second result, we give an explicit description of an element of order 4 in the class group of Q(sqrt{-2p}) and we compute its Artin symbol in the 4-Hilbert class field of Q(sqrt{-2p}), thereby generalizing a result of Leonard and Williams. Finally, we prove a power-saving error term for a prime-counting function related to the 16-rank of the class group of Q(sqrt{-2p}), thereby giving strong evidence against a conjecture of Cohn and Lagarias that the 16-rank is governed by a Chebotarev-type criterion.
8

Perceptions of 3rd year student teachers at the Caprivi College of Education as to what constitutes group work

Liman, Mohammed Audu 04 1900 (has links)
Science and Technology Education / M.Sc. (Chemical Education)
9

Symmetry, isotopy, and irregular covers

Winarski, Rebecca R. 22 May 2014 (has links)
We say that a covering space of the surface S over X has the Birman--Hilden property if the subgroup of the mapping class group of X consisting of mapping classes that have representatives that lift to S embeds in the mapping class group of S modulo the group of deck transformations. We identify one necessary condition and one sufficient condition for when a covering space has this property. We give new explicit examples of irregular branched covering spaces that do not satisfy the necessary condition as well as explicit covering spaces that satisfy the sufficient condition. Our criteria are conditions on simple closed curves, and our proofs use the combinatorial topology of curves on surfaces.
10

Algebraic degrees of stretch factors in mapping class groups

Shin, Hyunshik 22 May 2014 (has links)
Given a closed surface Sg of genus g, a mapping class f in \MCG(Sg) is said to be pseudo-Anosov if it preserves a pair of transverse measured foliations such that one is expanding and the other one is contracting by a number \lambda(f). The number \lambda(f) is called a stretch factor (or dilatation) of f. Thurston showed that a stretch factor is an algebraic integer with degree bounded above by 6g-6. However, little is known about which degrees occur. Using train tracks on surfaces, we explicitly construct pseudo-Anosov maps on Sg with orientable foliations whose stretch factor \lambda has algebraic degree 2g. Moreover, the stretch factor \lambda is a special algebraic number, called Salem number. Using this result, we show that there is a pseudo-Anosov map whose stretch factor has algebraic degree d, for each positive even integer d such that d≤g. Our examples also give a new approach to a conjecture of Penner.

Page generated in 0.0381 seconds