• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 4
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 25
  • 25
  • 25
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The distribution of the irreducibles in an algebraic number field /

Rozario, Rebecca, January 2003 (has links) (PDF)
Thesis (M.S.) in Mathematics and Statistics--University of Maine, 2003. / Includes vita. Includes bibliographical references (leavf 34 ).
2

The Distribution of the Irreducibles in an Algebraic Number Field

Rozario, Rebecca January 2003 (has links) (PDF)
No description available.
3

Survey on Birch and Swinnerton-Dyer conjecture.

January 1992 (has links)
by Leung Tak. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1992. / Includes bibliographical references (leaves 76-77). / Chapter 1 --- Introduction --- p.1 / Chapter 2 --- Elliptic curve --- p.4 / Chapter 2.1 --- Elliptic Curve in Normal Form --- p.4 / Chapter 2.2 --- Geometry and Group Law --- p.7 / Chapter 2.3 --- Special Class of Elliptic Curves --- p.10 / Chapter 2.4 --- Mordell's Conjecture --- p.12 / Chapter 2.5 --- Torsion Group --- p.14 / Chapter 2.6 --- Selmer Group and Tate-Shafarevitch. Group --- p.16 / Chapter 2.7 --- Endomorphism of Elliptic Curves --- p.19 / Chapter 2.8 --- Formal Group over Elliptic Curves --- p.23 / Chapter 2.9 --- The Finite Field Case --- p.26 / Chapter 2.10 --- The Local Field Case --- p.27 / Chapter 2.11 --- The Global Field Case --- p.29 / Chapter 3 --- Class Field Theory --- p.31 / Chapter 3.1 --- Valuation and Local Field --- p.31 / Chapter 3.2 --- Unramified and Totally Ramified Extensions and Their Norm Groups --- p.35 / Chapter 3.3 --- Formal Group and Abelian Extension of Local Field --- p.36 / Chapter 3.4 --- Abelian Extenion and Norm Residue Map --- p.41 / Chapter 3.5 --- Finite Extension and Ramification Group --- p.43 / Chapter 3.6 --- "Hilbert Symbols [α, β]w and (α, β)f" --- p.46 / Chapter 3.7 --- Adele and Idele --- p.48 / Chapter 3.8 --- Galois Extension and Kummer Extension --- p.50 / Chapter 3.9 --- Global Reciprocity Law and Global Class Field --- p.52 / Chapter 3.10 --- Ideal-Theoretic Formulation of Class Field Theory --- p.57 / Chapter 4 --- Hasse-Weil L-function of elliptic curves --- p.60 / Chapter 4.1 --- Classical Zeta Functions and L-functions --- p.60 / Chapter 4.2 --- Congruence Zeta Function --- p.63 / Chapter 4.3 --- Hasse-Weil L-function and Birch-Swinnerton-Dyer Conjecture --- p.64 / Chapter 4.4 --- A Sketch of the Proof from the Joint Paper of Coates and Wiles --- p.67 / Chapter 4.5 --- The works of other mathematicians --- p.73
4

Local class field theory via group cohomology method.

January 1996 (has links)
by Au Pat Nien. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1996. / Includes bibliographical references (leaves 86-88). / Chapter 1 --- Introduction --- p.1 / Chapter 2 --- Valuations --- p.4 / Chapter 2.1 --- Preliminaries --- p.4 / Chapter 2.2 --- Complete Fields --- p.6 / Chapter 2.3 --- Unramified Extension of Complete Field --- p.10 / Chapter 2.4 --- Local Fields --- p.12 / Chapter 3 --- Ramification Groups and Hasse-Herbrand Function --- p.16 / Chapter 3.1 --- Ramification Groups --- p.16 / Chapter 3.2 --- "The Quotients Gi/Gi+1, i ≥ 0" --- p.17 / Chapter 3.3 --- The Hasse-Herbrand function --- p.19 / Chapter 4 --- The Norm Map --- p.21 / Chapter 4.1 --- Lemmas --- p.21 / Chapter 4.2 --- The Norm Map on the Residue Field of a Totally Ramified Extension of Prime Degree --- p.22 / Chapter 4.3 --- Extension of the Perfect Residue Field in a Totally Ramified Extension --- p.26 / Chapter 4.4 --- The Norm Map on Finite Separable Extension of Knr with K Perfect --- p.28 / Chapter 5 --- Cohomology of Finite Groups --- p.30 / Chapter 5.1 --- Preliminaries --- p.30 / Chapter 5.2 --- Mappings of Cohomology Groups --- p.32 / Chapter 5.2.1 --- Restriction and Inflation --- p.32 / Chapter 5.2.2 --- Corestriction --- p.34 / Chapter 5.3 --- Cup Product --- p.34 / Chapter 5.4 --- Cohomology Groups of Low Dimensions --- p.35 / Chapter 5.5 --- Some Results of Group Cohomology --- p.43 / Chapter 6 --- The Brauer Group of a Field --- p.57 / Chapter 7 --- The Norm Residue Map --- p.60 / Chapter 7.1 --- Determination of the Brauer Group of a Local Field --- p.60 / Chapter 7.2 --- Canonical Class --- p.62 / Chapter 7.3 --- The Reciprocity Law --- p.64 / Chapter 8 --- The Local Symbol --- p.74 / Chapter 8.1 --- Definition --- p.74 / Chapter 8.2 --- The Hilbert Symbol --- p.74 / Chapter 8.3 --- The Differential of the Formal Power Series --- p.76 / Chapter 8.4 --- The Artin-Schreier Symbol --- p.78 / Chapter 9 --- Characterization of a Norm Group --- p.81 / Bibliography
5

Central simple algebras, cup-products and class field theory

Newton, Rachel Dominica January 2012 (has links)
No description available.
6

Local Class Field Theory via Lubin-Tate Theory /

Mohamed, Adam. January 2008 (has links)
Thesis (MSc)--University of Stellenbosch, 2008. / Bibliography. Also available via the Internet.
7

The Lichtenbaum conjecture at the prime 2 /

Rada, Ion. Kolster, Manfred. January 2002 (has links)
Thesis (Ph.D.)--McMaster University, 2002. / Adviser: Manfred Kolster. Includes bibliographical references. Also available via World Wide Web.
8

The Lichtenbaum conjecture at the prime 2 /

Rada, Ion. Kolster, Manfred. January 2002 (has links)
Thesis (Ph.D.)--McMaster University, 2002. / Adviser: Manfred Kolster. Includes bibliographical references. Also available via World Wide Web.
9

Différentes approches de la théorie l-adique du corps des classes. / Different approaches of l-afic class field theory

Reglade, Stephanie 08 September 2014 (has links)
Neukirch a développé la théorie abstraite du corps des classes dans son livre ``Class Field Theory''. Nous montrons qu'il est possible de déduire la théorie l-adique de Jaulentdu travail de Neukirch. La preuve nécessite, dans les deux cas (le cas local et le cas global) de définir les applications degré, les G-modules, valuations convenables et de prouver l'axiome du corps des classes. } Puis nous montrons qu'en considérant le même objet local, mais cette fois-ci muni de la valuation logarithmique, et en remplaçant l'extension maximale non ramifiée du corps local considéré par la $\mathbb{Z}_{l-extension cyclotomique, la théorie de Neukirch s'applique également, permettant ainsi de définir un symbole local logarithmique et un symbole global.Nous sommes alors en mesure de définir le Frobenius logarithmique associé à une place $\mathfrak{p}$ logarithmiquement non ramifiée, ce qui conduit naturellement à une application d'Artin logarithmique, dont nous étudions le noyau et les propriétés. Cela nécessite au préalable de définir le conducteur logarithmique associé à une $\ell$-extension abélienne finie. Nous introduisons alors les sous-modules de congruences logarithmiques, pour lesquels nous définissons le conducteur logarithmique associé à une classe d'équivalence sur ces modules. Nous prouvons l'égalité entre le conducteur logarithmique global d'une $\ell$-extension et le conducteur de la classe de congruences qui lui est associé. / Neukirch developedabstract class field theoryin his famousbook ``Class Field Theory''. Weshow that it ispossible to derive Jaulent's $\ell$-adic class fieldfrom Neukirch's framework. Theproof requiresin bothcases (local case and global case) to define suitable degree maps, $G$-modules, valuations and to prove the class fieldaxiom. Then we study thelocal object endowed with the logarithmicvaluation introduced by Jaulent and wereplace here the maximal, abelian unramified pro-$\ell$-extension of our local field by the $ {\mathbb{Z}_{\ell}}$-cyclotomic one, and the usualvaluation by the logarithmic one. Weshow that Neukich'sabstract theory appliesin this context, and allows to definea logarithmic local symbol and a global one. This allows to define the logarithmic Frobenius, in the context of the logarithmic ramification, and the logarithmic Artin map. We study its propertiesand its kernel.This requires before to define the logarithmic conductor. Then we introduce logarithmic congruences sub-modules, and the conductor attached to the coset of sucha module. We prove that both conductors coincide.
10

Periods of modular forms and central values of L-functions

Hopkins, Kimberly Michele 21 October 2010 (has links)
This thesis is comprised of three problems in number theory. The introduction is Chapter 1. The first problem is to partially generalize the main theorem of Gross, Kohnen and Zagier to higher weight modular forms. In Chapter 2, we present two conjectures which do this and some partial results towards their proofs as well as numerical examples. This work provides a new method to compute coefficients of weight k+1/2 modular forms for k>1 and to compute the square roots of central values of L-functions of weight 2k>2 modular forms. Chapter 3 presents four different interpretations of the main construction in Chapter 2. In particular we prove our conjectures are consistent with those of Beilinson and Bloch. The second problem in this thesis is to find an arithmetic formula for the central value of a certain Hecke L-series in the spirit of Waldspurger's results. This is done in Chapter 4 by using a correspondence between special points in Siegel space and maximal orders in quaternion algebras. The third problem is to find a lower bound for the cardinality of the principal genus group of binary quadratic forms of a fixed discriminant. Chapter 5 is joint work with Jeffrey Stopple and gives two such bounds. / text

Page generated in 0.0885 seconds