Spelling suggestions: "subject:"classical doptics"" "subject:"classical glyptics""
1 |
Ab initio simulation of optical properties of noble-metal clusters / Modélisation des propriétés optiques de nanoparticules métalliquesSinha Roy, Rajarshi 19 January 2018 (has links)
L'intérêt de la recherche fondamentale pour les morceaux nanométriques de métaux nobles est principalement dû à la résonance localisée des plasmons de surface (LSPR) dans l'absorption optique. Différents aspects, liés à la compréhension théorique de la LSPR dans le cas de clusters de métaux nobles de taille dite intermédiaire, sont étudiés dans ce manuscrit. Afin d'avoir une vision plus large nous utilisons deux approches : l'approche électromagnétique classique et le formalisme ab initio en temps réel de la théorie de la fonctionnelle de la densité dépendant du temps (RT-TDDFT). Une comparaison systématique et détaillée de ces deux approches souligne et quantifie les limitations de l'approche électromagnétique lorsqu'elle est appliquée à des systèmes de taille quantique. Les différences entre les excitations plasmoniques collectives et celles impliquant les électrons d, ainsi que leurs interactions, sont étudiées grâce au comportement spatial des densités correspondantes. Ces densités sont obtenues en appliquant une transformée de Fourier dans l'espace à la densité obtenue par les simulations DFT utilisant une perturbation delta-kick. Dans ce manuscrit, des clusters de métaux nobles nus et protégés par des ligands sont étudiés. En particulier, motivé par de récents travaux sur les phénomènes d'émergence de plasmon, l'étude par TD-DFT de nano-alliages Au-Cu de taille tout juste inférieure à 2nm à fourni de subtiles connaissances sur les effets d'alliages sur la réponse optique de tels systèmes. / The fundamental research interest in nanometric pieces of noble metals is mainly due to the localized surface-plasmon resonance (LSPR) in the optical absorption. Different aspects related to the theoretical understanding of LSPRs in `intermediate-size' noble-metal clusters are studied in this thesis. To gain a broader perspective both the real-time \ai formalism of \td density-functional theory (RT-TDDFT) and the classical electromagnetics approach are employed. A systematic and detailed comparison of these two approaches highlights and quantifies the limitations of the electromagnetics approach when applied to quantum-sized systems. The differences between collective plasmonic excitations and the excitations involving $d$-electrons, as well as the interplay between them are explored in the spatial behaviour of the corresponding induced densities by performing the spatially resolved Fourier transform of the time-dependent induced density obtained from a RT-TDDFT simulation using a $\delta$-kick perturbation. In this thesis, both bare and ligand-protected noble-metal clusters were studied. In particular, motivated by recent experiments on plasmon emergence phenomena, the TDDFT study of Au-Cu nanoalloys in the size range just below 2~nm produced subtle insights into the general effects of alloying on the optical response of these systems.
|
2 |
OVERCOMING THE RAYLEIGH LIMIT FOR HIGH-RESOLUTION OPTICAL IMAGING: QUANTUM ANDCLASSICAL METHODSHyunsoo Choi (18989168) 12 July 2024 (has links)
<p><br></p><p dir="ltr">Achieving high optical resolution imaging is one of the most important goals in the history of optics. However, due to finite aperture sizes, a diffraction limit is imposed on optical imaging. Therefore, the Rayleigh limit, which describes the minimum separation at which two point sources are resolvable, has served as a critical limit in optical resolution. Many methods have been studied to break the limit and succeed in resolving nearby sources below the Rayleigh criterion but only beyond a certain distance. Furthermore, it has been demonstrated that quantum-inspired optics techniques maintain consistent variance in estimating the separation of point sources even at low separations, but only with prior information like a known number of sources and equal brightness. Therefore, achieving the ultimate optical resolution remains an open question. This thesis will conclusively address this challenge considering real-world scenarios, i.e., no prior information or controlled lab environment as well as low signal-to-noise ratio (SNR), turbulence, and other practical challenges.</p><p><br></p><p dir="ltr">In information theory, the estimation variance of a random parameter can be quantified using the inverse of Fisher information. By maximizing the Fisher information, one can minimize the variance in estimation. In my thesis, we have shown that the measurement can be accelerated without sacrificing optical resolution using the adaptive mode so that quantum Fisher information per detected photon is maximized. The notable attribute that sets it apart from other quantum-inspired methods is that it does not require any prior information, making it more feasible for practical application. We have further shown that the space domain awareness (SDA) challenge can be effectively handled with the aforementioned approach with a very limited photon budget and even in the presence of turbulence. Toward solving the challenges, we designed a photon statistics-based direct imaging method that can also serve as a baseline method for quantum optics. In my thesis, atmospheric turbulence is also deeply explored and the effect is mitigated using reinforcement learning.</p><p><br></p>
|
Page generated in 0.0567 seconds