• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Deformation of Orbits in Minimal Sheets

Budmiger, Jonas 08 April 2010 (has links) (PDF)
The main object of study of this work are orbits in so-called minimal sheets in irreducible representations of semisimple groups. Let $G$ be a semisimple group. The notion of sheets goes back to Dixmier: Given a $G$-module $V$, the union of all orbits in $V$ of a fixed dimension is a locally closed subset. Its irreducible components are called sheets of $V$. We call a sheet minimal if it contains an orbit in $V$ of minimal strictly positive dimension among all orbits in $V$. In Chapter I, some notation is fixed and some basic results are proved. In Chapter II, we describe minimal sheets in simple $G$-modules, and study $G$-stable deformations of orbits in minimal sheets by means of an invariant Hilbert scheme. Invariant Hilbert Schemes have been introduced by Alexeev and Brion in 2005. These are quasi-projective schemes representing functors of families of $G$-schemes with prescribed Hilbert function. The discussion in Chapter II is closely related to the work of Jansou in the following way: Choose once and for all a highest weight vector $v_\lambda \in V(\lambda)$ for each dominant weight $\lambda \in \Lambda^+$, and let $X_\lambda = \overline{G v_\lambda} \subset V(\lambda)$ be the closure of the orbit $G v_\lambda$ of $v_\lambda$ in $V(\lambda)$. In his thesis Jansou investigates $G$-stable deformations of $X_\lambda$ in $V(\lambda)$. If $h_\lambda$ denotes the Hilbert function of $X_\lambda$, then Jansou proves that the invariant Hilbert scheme $Hilb^G_{h_\lambda}(V(\lambda))$ is an affine space of dimension 0 or 1, depending on $G$ and $\lambda$. Furthermore, he gives a complete list of all pairs $(G,\lambda)$ such that $Hilb^G_{h_\lambda}(V(\lambda))$ is an affine line. In the sequel, we call these weights Jansou-weights. The orbit $Gv_\lambda$ is of minimal strictly positive dimension among all $G$-orbits in $V(\lambda)$. There exist other orbit of the same dimension as $Gv_\lambda$ in $V(\lambda)$ if and only if $\lambda$ is an integral multiple of a Jansou-weight. Here, we start with a general orbit $X$ of minimal strictly positive dimension in a fixed simple $G$-module $V(\lambda)$, and we study $G$-stable deformations of $X$. In particular, we conjecture that the invariant Hilbert scheme parametrizing the $G$-stable deformations of $X$ in the closure of the sheet of $X$ is an affine space of dimension either 0 or 1. This will stand in contrast to the fact that the invariant Hilbert scheme parametrizing the $G$-stable deformations of $X$ in $V(\lambda)$ can look much more complicated. This is the content of Chapter III, in which we will focus on the group $\SL_2$, and compute some corresponding invariant Hilbert schemes. In particular, we study deformations of orbits of the form $SL_2 \cdot x^{d/2}y^{d/2}$ in the space $k[x,y]_d = V(d)$ of binary forms of degree $d$. It turns out that easiest accessible case is when $d$ is a multiple of 4, and even in this case the corresponding invariant Hilbert scheme can become very complicated. This reflects the principle that even in `simple' cases for invariant Hilbert schemes all possible sort of `bad' things (different irreducible components, non-reduced points, singularities) occur. (This `bad' behavior is also encountered in the case of the classical Grothendieck Hilbert scheme parametrizing closed subschemes of projective space with a given Hilbert polynomial.) In Chapter III Classical Invariant Theory is often used, and some computations are computer-based. Finally, in Chapter IV we turn our attention to not necessarily simple modules. In the multiplicity-free case important work has been done by Bravi and Cupit-Foutou. We translate some of their results to the case of not necessarily multiplicity-free modules. This corrects a result by Alexeev and Brion. Chapter IV is independent from the preceding chapters.
2

Géométrie des espaces de tenseurs : une approche effective appliquée à la mécanique des milieux continus / Geometry of tensor spaces : an effective approach applied to continuum mechanics

Olive, Marc 19 November 2014 (has links)
Plusieurs lois de comportement mécaniques possèdent une formulation tensorielle, comme c'est le cas pour l'élasticité où intervient un espace de tenseurs d'ordre 4, noté Ela. La classification des matériaux élastiques passent par la nécessité de décrire l'espace des orbites ELA/SO(3). Plus généralement, on étudie la géométrie d'un espace de tenseurs sur $mathbb{R}^{3}$, via l'action du groupe O(3). Cette géométrie est caractérisée par ses classes d'isotropies, ou encore classes de symétries. Tout espace de tenseurs possède en effet un nombre fini de classes d'isotropies. Nous proposons alors une méthode originale et générale pour obtenir ces classes d'istropie. Nous avons ainsi pu obtenir pour la première fois les classes d'isotropie d'un espace de tenseurs d'ordre 8 intervenant en théorie de l'élasticité linéaire du second-gradient de la déformation.Pour une représentation réelle d'un groupe compact, l'algèbre des polynômes invariants sépare les orbites, d'où la recherche d'une famille génératrice minimale de cette algèbre. Pour cela, on exploitant le lien entre les espaces de tenseurs et les espaces de formes binaires. Nous avons ainsi repris et ré-interprété les approches effectives de cette théorie, développées par Gordan au 19ième siècle. Cette ré-interprétation nous a permis d'obtenir de nombreux résultats, dont une famille génératrice minimale d'invariants pour l'élasticité mais aussi pour la piézoélectricté. Nous avons pu retrouver d'une façon simple les séries de Gordan, ainsi que des relations plus récentes d'Abdesselam--Chipalkatti sur les transvectants de formes binaires. / Tensorial formulation of mechanical constitutive equations is a very important matter in continuum mechanics. For instance, the space of elastic tensors is a subspace of 4th order tensors with a natural SO(3) group action. More generaly, we have to study the geometry of a tensor space defined on $mathbb{R}^{3}$, under O(3) group action.To describe such a geometry, we first have to exhibit its isotropy classes, also named symetry classes. Indeed, each tensor space possesses a finite number of isotropy classes. In this present work, we propose an original method to obtain isotropy classes of a given tensor space. As an illustration of this new method, we get for the first time the isotropy classes of a 8th order tensor space occuring in second strain-gradient elasticity theory. In the case of a real representation of a compact group, invariant algebra seperates the orbits. This observation motivates the purpose to find a finite generating set of polynomial invariants. For that purpose, we make use of the link between tensor spaces and spaces of binary forms, which belongs to the classical invariant theory. We thus have to deal with SL(2,$mathbb{C}$) group action. To obtain new results, we have reformulated and reinterpreted effective approaches of Gordan's algorithm, developped during XIXth century. We then obtain for the first time a minimal generating family of elasticity tensor space, and a generating family of piezoelectricity tensor space. Using linear algebra arguments, we were also able to get important relations of classical invariant theory, such as the Gordan's series and the Abdesselam--Chipalkatti's quadratic relations on transvectants.
3

Nouvelles perspectives sur les algèbres de type Askey–Wilson

Gaboriaud, Julien 08 1900 (has links)
Cette thèse se divise en trois parties qui peuvent être toutes regroupées autour d'une même bannière : l'étude de structures algébriques reliées aux algèbres de type Askey–Wilson. Alors que dans la première partie on s'efforce d'obtenir des interprétations duales (au sens de Howe) de ces algèbres, dans les autres parties on étudie des généralisations de ces algèbres. Des dégénérations de l'algèbre de Sklyanin, générées par des blocs plus fondamentaux que ceux générant les algèbres de type Askey–Wilson, sont étudiées dans la deuxième partie et des généralisations de plus haut rang des algèbres de type Askey–Wilson sont étudiées dans la troisième partie. Dans la première partie, en invoquant la dualité de Howe, deux interprétations duales sont obtenues pour les algèbres de Racah, Bannai–Ito, Askey–Wilson, Higgs, Hahn, \(q\)-Hahn et dual \(-1\) Hahn. La façon dont la dualité de Howe opère est rendue explicite par l'examen de processus de réduction dimensionnelle. Un modèle superintégrable 2D de mécanique quantique superconforme dont l'algèbre de symétrie est celle de type dual \(-1\) Hahn est également introduit et solutionné. Dans la deuxième partie, des algèbres générées par des opérateurs de contiguïté et d'échelle encodant des propriétés de familles de polynômes sont étudiées. Ces opérateurs appartiennent à la classe des opérateurs de Sklyanin–Heun, qui peuvent être définis sur plusieurs grilles diverses. On découvre qu'ils génèrent des dégénérations de l'algèbre de Sklyanin. On démontre que les représentations irréductibles de dimension finie de ces algèbres ont pour base des familles de para-polynômes. Les grilles linéaires, quadratiques, exponentielles et d'Askey–Wilson sont étudiées et mènent respectivement aux polynômes orthogonaux des familles de para-Krawtchouk, para-Racah, \(q\)-para-Krawtchouk et \(q\)-para-Racah. Enfin, la façon dont les polynômes de para-Krawtchouk et d'autres familles de polynômes orthogonaux sont reliées aux représentations tridiagonales du plan de Jordan déformé est présentée. Dans la dernière partie, on explore des généralisations à plus haut rang pour les algèbres de Racah et Askey–Wilson. Pour ce faire, on étudie les réalisations de ces algèbres en termes de Casimirs intermédiaires. Le rôle de la matrice \(R\) tressée est élucidé : celle-ci permet de relier divers Casimirs intermédiaires entre eux par conjugaison. Un isomorphisme entre l'algèbre de skein du crochet de Kauffman de la sphère à 4 trous et l'algèbre engendrée par les Casimir intermédiaires dans \(U_q(\mathfrak{sl}_2)^{\otimes 3}\) est présenté et permet d'interpréter de façon diagrammatique la conjugaison par la matrice \(R\) tressée mentionnée ci-haut. Finalement, une présentation du centralisateur \(Z_n(\mathfrak{sl}_2)\) de \(U(\mathfrak{sl}_2)\) dans \(U(\mathfrak{sl}_2)^{\otimes n}\) par générateurs et relations est obtenue et on montre que ce centralisateur est isomorphe à un quotient (obtenu explicitement) de l'algèbre de Racah de plus haut rang \(R(n)\). / This thesis is divided in three parts which all orbit around the same theme: the study of algebraic structures related to the algebras of Askey–Wilson type. In the first part we obtain two interpretations that are dual in the sense of Howe for the algebras of Askey–Wilson type. Meanwhile, the other two parts are concerned with generalizations of these algebras. In the second part, we study degenerations of the Sklyanin algebra, which are built out of generators that are more fundamental than those of the Askey–Wilson algebra. In the last part, generalizations of the Askey–Wilson type algebras to higher rank are studied. In the first part, dual interpretations are obtained for the Racah, Bannai–Ito, Askey–Wilson, Higgs, Hahn, \(q\)-Higgs and dual \(-1\) Hahn algebras by invoking Howe duality. The way that this Howe duality operates is made explicit through the examination of a dimensional reduction procedure. A 2D superintegrable superconformal quantum mechanics model, whose symmetry algebra is the one of dual \(-1\) Hahn type, is also introduced and solved. In the second part, we study algebras that are generated by contiguity and ladder operators that encode properties of families of orthogonal polynomials. We show that these operators belong to the Sklyanin–Heun class of operators, which can be defined for various grids. We also show how their algebraic relations correspond to those of degenerations of the Sklyanin algebra. Then, we show how various families of para-polynomials support finite-dimensional irreducible representations of these degenerate algebras. From the linear, quadratic, exponential and Askey–Wilson grids, we are respectively led to the para-Krawtchouk, para-Racah, \(q\)-para-Krawtchouk and \(q\)-para-Racah polynomials. Later, we connect the para-Krawtchouk polynomials (and other families of orthogonal polynomials) to tridiagonal representations of the deformed Jordan plane. In the final part, we explore higher rank generalizations of the Racah and Askey–Wilson algebras. To that end, their realizations in terms of intermediate Casimir elements are studied. The role of the braided \(R\)-matrix is understood as follows: it connects various intermediate Casimir elements through conjugation. We obtain an isomorphism between the Kauffman bracket skein algebra of the four-punctured sphere and the algebra generated by the intermediate Casimir elements in \(U_q(\mathfrak{sl}_2)^{\otimes3}\). This leads to a diagrammatic interpretation of the conjugation by the braided \(R\)-matrix mentioned in the above. Lastly, a presentation of the centralizer \(Z_n(\mathfrak{sl}_2)\) of \(U(\mathfrak{sl}_2)\) in \(U(\mathfrak{sl}_2)^{\otimes n}\) by generators and relations is obtained and we show that this centralizer is isomorphic to a quotient (which we provide explicitly) of the higher rank Racah algebra \(R(n)\).

Page generated in 0.0837 seconds