• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Wavelets, predição linear e LS-SVM aplicados na análise e classificação de sinais de vozes patológicas / Wavelets, LPC and LS-SVM applied for analysis and identification of pathological voice signals

Fonseca, Everthon Silva 24 April 2008 (has links)
Neste trabalho, foram utilizadas as vantagens da ferramenta matemática de análise temporal e espectral, a transformada wavelet discreta (DWT), além dos coeficientes de predição linear (LPC) e do algoritmo de inteligência artificial, Least Squares Support Vector Machines (LS-SVM), para aplicações em análise de sinais de voz e classificação de vozes patológicas. Inúmeros trabalhos na literatura têm demonstrado o grande interesse existente por ferramentas auxiliares ao diagnóstico de patologias da laringe. Os componentes da DWT forneceram parâmetros de medida para a análise e classificação das vozes patológicas, principalmente aquelas provenientes de pacientes com edema de Reinke e nódulo nas pregas vocais. O banco de dados com as vozes patológicas foi obtido do Departamento de Otorrinolaringologia e Cirurgia de Cabeça e Pescoço do Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto (FMRP-USP). Utilizando-se o algoritmo de reconhecimento de padrões, LS-SVM, mostrou-se que a combinação dos componentes da DWT de Daubechies com o filtro LP inverso levou a um classificador de bom desempenho alcançando mais de 90% de acerto na classificação das vozes patológicas. / The main objective of this work was to use the advantages of the time-frequency analysis mathematical tool, discrete wavelet transform (DWT), besides the linear prediction coefficients (LPC) and the artificial intelligence algorithm, Least Squares Support Vector Machines (LS-SVM), for applications in voice signal analysis and classification of pathological voices. A large number of works in the literature has been shown that there is a great interest for auxiliary tools to the diagnosis of laryngeal pathologies. DWT components gave measure parameters for the analysis and classification of pathological voices, mainly that ones from patients with Reinke\'s edema and nodule in the vocal folds. It was used a data bank with pathological voices from the Otolaryngology and the Head and Neck Surgery sector of the Clinical Hospital of the Faculty of Medicine at Ribeirão Preto, University of Sao Paulo (FMRP-USP), Brazil. Using the automatic learning algorithm applied in pattern recognition problems, LS-SVM, results have showed that the combination of Daubechies\' DWT components and inverse LP filter leads to a classifier with good performance reaching more than 90% of accuracy in the classification of the pathological voices.
2

Wavelets, predição linear e LS-SVM aplicados na análise e classificação de sinais de vozes patológicas / Wavelets, LPC and LS-SVM applied for analysis and identification of pathological voice signals

Everthon Silva Fonseca 24 April 2008 (has links)
Neste trabalho, foram utilizadas as vantagens da ferramenta matemática de análise temporal e espectral, a transformada wavelet discreta (DWT), além dos coeficientes de predição linear (LPC) e do algoritmo de inteligência artificial, Least Squares Support Vector Machines (LS-SVM), para aplicações em análise de sinais de voz e classificação de vozes patológicas. Inúmeros trabalhos na literatura têm demonstrado o grande interesse existente por ferramentas auxiliares ao diagnóstico de patologias da laringe. Os componentes da DWT forneceram parâmetros de medida para a análise e classificação das vozes patológicas, principalmente aquelas provenientes de pacientes com edema de Reinke e nódulo nas pregas vocais. O banco de dados com as vozes patológicas foi obtido do Departamento de Otorrinolaringologia e Cirurgia de Cabeça e Pescoço do Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto (FMRP-USP). Utilizando-se o algoritmo de reconhecimento de padrões, LS-SVM, mostrou-se que a combinação dos componentes da DWT de Daubechies com o filtro LP inverso levou a um classificador de bom desempenho alcançando mais de 90% de acerto na classificação das vozes patológicas. / The main objective of this work was to use the advantages of the time-frequency analysis mathematical tool, discrete wavelet transform (DWT), besides the linear prediction coefficients (LPC) and the artificial intelligence algorithm, Least Squares Support Vector Machines (LS-SVM), for applications in voice signal analysis and classification of pathological voices. A large number of works in the literature has been shown that there is a great interest for auxiliary tools to the diagnosis of laryngeal pathologies. DWT components gave measure parameters for the analysis and classification of pathological voices, mainly that ones from patients with Reinke\'s edema and nodule in the vocal folds. It was used a data bank with pathological voices from the Otolaryngology and the Head and Neck Surgery sector of the Clinical Hospital of the Faculty of Medicine at Ribeirão Preto, University of Sao Paulo (FMRP-USP), Brazil. Using the automatic learning algorithm applied in pattern recognition problems, LS-SVM, results have showed that the combination of Daubechies\' DWT components and inverse LP filter leads to a classifier with good performance reaching more than 90% of accuracy in the classification of the pathological voices.

Page generated in 0.1038 seconds