Spelling suggestions: "subject:"classification dess cibles"" "subject:"classification deus cibles""
1 |
Algorithms for the detection and localization of pedestrians and cyclists using new generation automotive radar systems / Algorithmes pour la détection et la localisation de piétons et de cyclistes en utilisant des systèmes radars automobiles de nouvelle générationedestrians and cyclists using new generation automotive radar systemsAbakar Issakha, Souleymane 11 December 2017 (has links)
En réponse au nombre toujours élevé de décès provoqués par les accidents routiers, l'industrie automobile a fait de la sécurité un sujet majeur de son activité global. Les radars automobiles qui étaient de simples capteurs pour véhicule de confort, sont devenus des éléments essentiels de la norme de sécurité routière. Le domaine de l’automobile est un domaine très exigent en terme de sécurité et les radars automobiles doivent avoir des performances de détection très élevées et doivent répondre à des nombreuses contraintes telles que la facilité de production et/ou le faible coût. Cette thèse concerne le développement d’algorithmes pour la détection et la localisation de piétons et de cyclistes pour des radars automobiles de nouvelle génération. Nous avons proposé une architecture de réseau d'antennes non uniforme optimale et des méthodes d'estimation spectrale à haute résolution permettant d’estimer avec précision la position angulaire des objets à partir de la direction d'arrivée (DoA) de leur réponse. Ces techniques sont adaptées à l'architecture du réseau d'antennes proposé et les performances sont évaluées à l'aide de données radar automobiles simulées et réelles acquises dans le cadre de scénarios spécifiques. Nous avons également proposé un détecteur de cible de collision, basé sur la décomposition en sous-espaces Doppler, dont l'objectif principal est d'identifier des cibles latérales dont les caractéristiques de trajectoire représentent potentiellement un danger de collision. Une méthode de calcul d'attribut de cible est également développée et un algorithme de classification est proposé pour discriminer les piétons, cyclistes et véhicules. Les différents algorithmes sont évalués et validés à l'aide de données radar automobiles réelles sur plusieurs scenarios. / In response to the persistently high number of deaths provoked by road crashes, the automotive industry has promoted safety as a major topic in their global activity. Automotive radars have been transformed from being simple sensors for comfort vehicle, to becoming essential elements of safety standard. The design of new generations automotive radars has to face various constraints and generally proposes a compromise between reliability, robustness, manufacturability, high-performance and low cost. The main objective of this PhD thesis is to design algorithms for the detection and localization of pedestrians and cyclists using new generation automotive radars. We propose an optimal non-uniform antenna array architecture and some high resolution spectral estimation methods to accurately estimate the position of objects from the direction of arrival (DOA) of their responses to the radar. These techniques are adapted to the proposed antenna array architecture and the performance is evaluated using both simulated and real automotive radar data, acquired in the frame of specific scenarios. We propose a collision target detector, based on the orthogonality of angle-Doppler subspaces, whose main goal is to identify lateral targets, whose trajectory features represent potentially a danger of collision. A target attribute calculation method is also developed and classification algorithm is proposed to classify pedestrian, cyclists and vehicles. This classification algorithm is evaluated and validated using real automotive radar data with several scenarios.
|
2 |
Amélioration des techniques de reconnaissance automatique de mines marines par analyse de l'écho à partir d'images sonar haute résolution / Improvement of automatic recognition techniques of marine mines by analyzing echo in high resolution sonar imagesElbergui, Ayda 10 December 2013 (has links)
La classification des cibles sous-marines est principalement basée sur l'analyse de l'ombre acoustique. La nouvelle génération des sonars d'imagerie fournit une description plus précise de la rétrodiffusion de l'onde acoustique par les cibles. Par conséquent, la combinaison de l'analyse de l'ombre et de l'écho est une voie prometteuse pour améliorer la classification automatique des cibles. Quelques systèmes performants de classification automatique des cibles s'appuient sur un modèle pour faire l'apprentissage au lieu d'utiliser uniquement des réponses expérimentales ou simulées de cibles pour entraîner le classificateur. Avec une approche basée modèle, un bon niveau de performance en classification peut être obtenu si la modélisation de la réponse acoustique de la cible est suffisamment précise. La mise en œuvre de la méthode de classification a nécessité de modéliser avec précision la réponse acoustique des cibles. Le résultat de cette modélisation est un simulateur d'images sonar (SIS). Comme les sonars d'imagerie fonctionnent à haute et très haute fréquence le modèle est basé sur le lancer de rayons acoustiques. Plusieurs phénomènes sont pris en compte pour augmenter le réalisme de la réponse acoustique (les effets des trajets multiples, l'interaction avec le fond marin, la diffraction, etc.). La première phase du classificateur utilise une approche basée sur un modèle. L'information utile dans la signature acoustique de la cible est nommée « A-scan ». Dans la pratique, l'A-scan de la cible détectée est comparé à un ensemble d'A-scans générés par SIS dans les mêmes conditions opérationnelles. Ces gabarits (A-scans) sont créés en modélisant des objets manufacturés de formes simples et complexes (mines ou non mines). Cette phase intègre un module de filtrage adapté pour permettre un résultat de classification plus souple capable de fournir un degré d'appartenance en fonction du maximum de corrélation obtenu. Avec cette approche, l'ensemble d'apprentissage peut être enrichi afin d'améliorer la classification lorsque les classes sont fortement corrélées. Si la différence entre les coefficients de corrélation de l'ensemble de classes les plus probables n'est pas suffisante, le résultat est considéré ambigu. Une deuxième phase est proposée afin de distinguer ces classes en ajoutant de nouveaux descripteurs et/ou en ajoutant davantage d'A-scans dans la base d'apprentissage et ce, dans de nouvelles configurations proches des configurations ambiguës. Ce processus de classification est principalement évalué sur des données simulées et sur un jeu limité de données réelles. L'utilisation de l'A-scan a permis d'atteindre des bonnes performances de classification en mono-vue et a amélioré le résultat de classification pour certaines ambiguïtés récurrentes avec des méthodes basées uniquement sur l'analyse d'ombre. / Underwater target classification is mainly based on the analysis of the acoustic shadows. The new generation of imaging sonar provides a more accurate description of the acoustic wave scattered by the targets. Therefore, combining the analysis of shadows and echoes is a promising way to improve automated target classification. Some reliable schemes for automated target classification rely on model based learning instead of only using experimental samples of target acoustic response to train the classifier. With this approach, a good performance level in classification can be obtained if the modeling of the target acoustic response is accurate enough. The implementation of the classification method first consists in precisely modeling the acoustic response of the targets. The result of the modeling process is a simulator called SIS (Sonar Image Simulator). As imaging sonars operate at high or very high frequency the core of the model is based on acoustical ray-tracing. Several phenomena have been considered to increase the realism of the acoustic response (multi-path propagation, interaction with the surrounding seabed, edge diffraction, etc.). The first step of the classifier consists of a model-based approach. The classification method uses the highlight information of the acoustic signature of the target called « A-scan ». This method consists in comparing the A-scan of the detected target with a set of simulated A-scans generated by SIS in the same operational conditions. To train the classifier, a Template base (A-scans) is created by modeling manmade objects of simple and complex shapes (Mine Like Objects or not). It is based on matched filtering in order to allow more flexible result by introducing a degree of match related to the maximum of correlation coefficient. With this approach the training set can be extended increasingly to improve classification when classes are strongly correlated. If the difference between the correlation coefficients of the most likely classes is not sufficient the result is considered ambiguous. A second stage is proposed in order to discriminate these classes by adding new features and/or extending the initial training data set by including more A-scans in new configurations derived from the ambiguous ones. This classification process is mainly assessed on simulated side scan sonar data but also on a limited data set of real data. The use of A-scans have achieved good classification performances in a mono-view configuration and can improve the result of classification for some remaining confusions using methods only based on shadow analysis.
|
Page generated in 0.1338 seconds