• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Prise en compte de l'environnement marin dans le processus de reconnaissance automatique de cibles sous-marines / Underwater environment characterization for automatic target recognition

Picard, Laurent 18 May 2017 (has links)
Au cours des dernières décennies, les avancées en termes de technologies robotiques sous-marines ont permis de réaliser des levés sur les fonds marins à l'aide de véhicules sous-marins autonomes (AUV). Ainsi, équiper un AUV avec un sonar latéral permet de scanner une vaste zone de manière rapide. Naturellement, les forces armées se sont intéressées à de tels dispositifs pour effectuer des missions de chasses aux mines rapides et sécurisées pour le facteur humain. Néanmoins, analyser des images sonar par un ordinateur plutôt que par un opérateur reste très complexe. En effet, les chaînes de reconnaissance automatique de cibles (ATR) doivent faire face à la variabilité de l'environnement marin et il a été démontré qu'une forte relation existe entre la texture d'une image et la difficulté d'y détecter des mines. Effectivement, sur des fonds fortement texturés, voire encombrés, les performances d'une chaîne ATR peuvent être très dégradées. Ainsi, intégrer des informations environnementales dans le processus apparaît comme une piste crédible pour améliorer ses performances. Ces travaux de thèse proposent d'étudier la manière de décrire cet environnement marin et comment l'intégrer dans un processus ATR. Pour répondre à ces défis, nous proposons tout d'abord une nouvelle représentation des images sonar basée sur l'utilisation du signal monogène. Ce dernier permet d'extraire des informations énergétiques, géométriques et structurelles sur la texture locale d'une image. La nature multi-échelle de cet outil permet de tenir compte de la variabilité en taille des structures sous-marines. Ensuite, le concept de dimension intrinsèque est introduit pour décrire une image sonar en termes d'homogénéité, d'anisotropie et de complexité. Ces trois descripteurs sont directement reliés à la difficulté de détection des mines sous-marines dans un fond texturé et permettent de réaliser une classification très précise des images sonar en fonds homogènes, anisotropes et complexes. De notre point de vue, la chasse aux mines sous-marines ne peut pas être réalisée de la même manière sur ces trois types de fond. En effet, leurs natures et caractéristiques propres mènent à des challenges variés pour le processus ATR. Pour le démontrer, nous proposons de réaliser un premier algorithme de détection spécifique, appliqué aux zones anisotropes, qui prend en considération les caractéristiques environnementales de ces régions. / In the last decades, advances in marine robot technology allowed to perform accurate seafloor surveys by means of autonomous underwater vehicles (AUVs). Thanks to a sidescan sonar carried by an AUV, a wide area can be scanned quickly. Navies are really interested in using such vehicles for underwater mine countermeasures (MCM) purposes, in order to perform mine hunting missions rapidly and safely for human operators. Nevertheless, on-board intelligence, which intends to replace human operator for sonar image analysis, remains challenging. Current automatic target recognition (ATR) processes have to cope with the variability of the seafloor. Indeed, there is a strong relationship between the seafloor appearance on sidescan sonar images and the underwater target detection rates. Thus, embed some environmental information in the ATR process seems to be a way for achieving more effective automatic target recognition. In this thesis, we address the problem of improving the ATR process by taking into account the local environment. To this end, a new representation of sonar images is considered by use of the theory of monogenic signal. It provides a pixelwise energetic, geometric and structural information into a multi-scale framework. Then a seafloor characterization is carried out by estimating the intrinsic dimensionality of the underwater structures so as to describe sonar images in terms of homogeneity, anisotropy and complexity. These three features are directly linked to the difficulty of detecting underwater mines and enable an accurate classification of sonar images into benign, rippled or complex areas. From our point of view, underwater mine hunting cannot be performed in the same way on these three seafloor types with various challenges from an ATR point of view. To proceed with this idea, we propose to design a first specific detection algorithm for sand rippled areas. This algorithm takes into consideration an environmental description of ripples which allow to outperform classic approaches in this type of seafloor.
2

Amélioration des techniques de reconnaissance automatique de mines marines par analyse de l'écho à partir d'images sonar haute résolution / Improvement of automatic recognition techniques of marine mines by analyzing echo in high resolution sonar images

Elbergui, Ayda 10 December 2013 (has links)
La classification des cibles sous-marines est principalement basée sur l'analyse de l'ombre acoustique. La nouvelle génération des sonars d'imagerie fournit une description plus précise de la rétrodiffusion de l'onde acoustique par les cibles. Par conséquent, la combinaison de l'analyse de l'ombre et de l'écho est une voie prometteuse pour améliorer la classification automatique des cibles. Quelques systèmes performants de classification automatique des cibles s'appuient sur un modèle pour faire l'apprentissage au lieu d'utiliser uniquement des réponses expérimentales ou simulées de cibles pour entraîner le classificateur. Avec une approche basée modèle, un bon niveau de performance en classification peut être obtenu si la modélisation de la réponse acoustique de la cible est suffisamment précise. La mise en œuvre de la méthode de classification a nécessité de modéliser avec précision la réponse acoustique des cibles. Le résultat de cette modélisation est un simulateur d'images sonar (SIS). Comme les sonars d'imagerie fonctionnent à haute et très haute fréquence le modèle est basé sur le lancer de rayons acoustiques. Plusieurs phénomènes sont pris en compte pour augmenter le réalisme de la réponse acoustique (les effets des trajets multiples, l'interaction avec le fond marin, la diffraction, etc.). La première phase du classificateur utilise une approche basée sur un modèle. L'information utile dans la signature acoustique de la cible est nommée « A-scan ». Dans la pratique, l'A-scan de la cible détectée est comparé à un ensemble d'A-scans générés par SIS dans les mêmes conditions opérationnelles. Ces gabarits (A-scans) sont créés en modélisant des objets manufacturés de formes simples et complexes (mines ou non mines). Cette phase intègre un module de filtrage adapté pour permettre un résultat de classification plus souple capable de fournir un degré d'appartenance en fonction du maximum de corrélation obtenu. Avec cette approche, l'ensemble d'apprentissage peut être enrichi afin d'améliorer la classification lorsque les classes sont fortement corrélées. Si la différence entre les coefficients de corrélation de l'ensemble de classes les plus probables n'est pas suffisante, le résultat est considéré ambigu. Une deuxième phase est proposée afin de distinguer ces classes en ajoutant de nouveaux descripteurs et/ou en ajoutant davantage d'A-scans dans la base d'apprentissage et ce, dans de nouvelles configurations proches des configurations ambiguës. Ce processus de classification est principalement évalué sur des données simulées et sur un jeu limité de données réelles. L'utilisation de l'A-scan a permis d'atteindre des bonnes performances de classification en mono-vue et a amélioré le résultat de classification pour certaines ambiguïtés récurrentes avec des méthodes basées uniquement sur l'analyse d'ombre. / Underwater target classification is mainly based on the analysis of the acoustic shadows. The new generation of imaging sonar provides a more accurate description of the acoustic wave scattered by the targets. Therefore, combining the analysis of shadows and echoes is a promising way to improve automated target classification. Some reliable schemes for automated target classification rely on model based learning instead of only using experimental samples of target acoustic response to train the classifier. With this approach, a good performance level in classification can be obtained if the modeling of the target acoustic response is accurate enough. The implementation of the classification method first consists in precisely modeling the acoustic response of the targets. The result of the modeling process is a simulator called SIS (Sonar Image Simulator). As imaging sonars operate at high or very high frequency the core of the model is based on acoustical ray-tracing. Several phenomena have been considered to increase the realism of the acoustic response (multi-path propagation, interaction with the surrounding seabed, edge diffraction, etc.). The first step of the classifier consists of a model-based approach. The classification method uses the highlight information of the acoustic signature of the target called « A-scan ». This method consists in comparing the A-scan of the detected target with a set of simulated A-scans generated by SIS in the same operational conditions. To train the classifier, a Template base (A-scans) is created by modeling manmade objects of simple and complex shapes (Mine Like Objects or not). It is based on matched filtering in order to allow more flexible result by introducing a degree of match related to the maximum of correlation coefficient. With this approach the training set can be extended increasingly to improve classification when classes are strongly correlated. If the difference between the correlation coefficients of the most likely classes is not sufficient the result is considered ambiguous. A second stage is proposed in order to discriminate these classes by adding new features and/or extending the initial training data set by including more A-scans in new configurations derived from the ambiguous ones. This classification process is mainly assessed on simulated side scan sonar data but also on a limited data set of real data. The use of A-scans have achieved good classification performances in a mono-view configuration and can improve the result of classification for some remaining confusions using methods only based on shadow analysis.

Page generated in 0.0449 seconds