Spelling suggestions: "subject:"classification ett segmentation"" "subject:"classification eet segmentation""
1 |
ANALYSE DE TEXTURE PAR METHODES MARKOVIENNES ET PAR MORPHOLOGIE MATHEMATIQUE : APPLICATION A L'ANALYSE DES ZONES URBAINES SUR DES IMAGES SATELLITALES /LORETTE, ANNE. Zerubia, Josiane January 1999 (has links)
Thèse de doctorat : SCIENCES ET TECHNIQUES : Nice : 1999. / 1999NICE5327. 134 ref.
|
2 |
Content-based Audio Management And Retrieval System For News BroadcastsDogan, Ebru 01 September 2009 (has links) (PDF)
The audio signals can provide rich semantic cues for analyzing multimedia content, so audio information has been recently used for content-based multimedia indexing and retrieval. Due to growing amount of audio data, demand for efficient retrieval techniques is increasing. In this thesis work, we propose a complete, scalable and extensible audio based content management and retrieval system for news broadcasts. The proposed system considers classification, segmentation, analysis and retrieval of an audio stream. In the sound classification and segmentation stage, a sound stream is segmented by classifying each sub segment into silence, pure speech, music, environmental sound, speech over music, and speech over environmental sound in multiple steps. Support Vector Machines and Hidden Markov Models are employed for classification and these models are trained by using different sets of MPEG-7 features. In the analysis and retrieval stage, two alternatives exist for users to query audio data. The first of these isolates user from main acoustic classes by providing semantic domain based fuzzy classes. The latter offers users to query audio by giving an audio sample in order to find out the similar segments or by requesting expressive summary of the content directly. Additionally, a series of tests was conducted on audio tracks of TRECVID news broadcasts to evaluate the performance of the proposed solution.
|
3 |
VISUAL SEMANTIC SEGMENTATION AND ITS APPLICATIONSGao, Jizhou 01 January 2013 (has links)
This dissertation addresses the difficulties of semantic segmentation when dealing with an extensive collection of images and 3D point clouds. Due to the ubiquity of digital cameras that help capture the world around us, as well as the advanced scanning techniques that are able to record 3D replicas of real cities, the sheer amount of visual data available presents many opportunities for both academic research and industrial applications. But the mere quantity of data also poses a tremendous challenge. In particular, the problem of distilling useful information from such a large repository of visual data has attracted ongoing interests in the fields of computer vision and data mining.
Structural Semantics are fundamental to understanding both natural and man-made objects. Buildings, for example, are like languages in that they are made up of repeated structures or patterns that can be captured in images. In order to find these recurring patterns in images, I present an unsupervised frequent visual pattern mining approach that goes beyond co-location to identify spatially coherent visual patterns, regardless of their shape, size, locations and orientation.
First, my approach categorizes visual items from scale-invariant image primitives with similar appearance using a suite of polynomial-time algorithms that have been designed to identify consistent structural associations among visual items, representing frequent visual patterns. After detecting repetitive image patterns, I use unsupervised and automatic segmentation of the identified patterns to generate more semantically meaningful representations. The underlying assumption is that pixels capturing the same portion of image patterns are visually consistent, while pixels that come from different backdrops are usually inconsistent. I further extend this approach to perform automatic segmentation of foreground objects from an Internet photo collection of landmark locations.
New scanning technologies have successfully advanced the digital acquisition of large-scale urban landscapes. In addressing semantic segmentation and reconstruction of this data using LiDAR point clouds and geo-registered images of large-scale residential areas, I develop a complete system that simultaneously uses classification and segmentation methods to first identify different object categories and then apply category-specific reconstruction techniques to create visually pleasing and complete scene models.
|
4 |
Des otolithes aux satellites : méthodes et applications du traitement du signal et des images pour l'observation de l'océanFABLET, Ronan 01 March 2012 (has links) (PDF)
Ce document présente une synthèse des activités de recherche menées depuis une dizaine d'années en premier lieu dans le cadre du Laboratoire Ifremer-IRD de Sclérochronologie des Animaux Aquatiques et du département Sciences et Technologies Halieutiques de l'Ifremer puis au sein du département Signal & Communications de Télécom Bretagne et du Laboratoire en Sciences et Techniques de l'Information, de la Communication et de la Connaissance. De manière générale, ces activités se situent à l'interface des STIC1 et de l'océanographie. Dans le cadre d'approches interdisciplinaires, ces travaux ont visé à exploiter et développer des outils et méthodes de traitement du signal et des images pour (i) fournir de nouvelles représentations des processus/scènes observés, (ii) exploiter ces représentations pour inférer ou reconstruire des informations d'intérêt du point de vue thématique. Trois domaines thématiques relevant de la télédétection de l'océan au sens large ont été privilégiés : initialement, les otolithes comme marqueurs des traits de vie individuels des poissons et la télédétection acoustique des fonds marins et de l'écosystème pélagique, et plus récemment la télédétection satellitaire de la surface de l'océan. Ces problématiques conduisent notamment à aborder différentes problématiques génériques du traitement du signal et des images telles que l'analyse de la géométrie de signaux multivariés (y compris des formes), l'analyse et la reconnaissance de textures, l'interpolation de données manquantes, la reconnaissance de scènes et d'objets à travers différents cadres méthodologiques (modèles probabilistes, inférence bayésienne, approches variationnelles, apprentissage statistique,...). A partir de cette expertise est envisagé le potentiel, encore largement inexploré, d'une exploration des bases d'observations multi-échelles et multi-modales de l'océan, pour la caractérisation et la modélisation des processus clés déterminant les dynamiques des écosystèmes marins. Cette analyse met en évidence les enjeux réels du traitement de l'information dans ce contexte thématique et permet de dégager des problématiques scientifiques que l'on cherchera à développer dans les prochaines années.
|
5 |
Pokročilé metody segmentace cévního řečiště na fotografiích sítnice / Advanced retinal vessel segmentation methods in colour fundus imagesSvoboda, Ondřej January 2013 (has links)
Segmentation of vasculature tree is an important step of the process of image processing. There are many methods of automatic blood vessel segmentation. These methods are based on matched filters, pattern recognition or image classification. Use of automatic retinal image processing greatly simplifies and accelerates retinal images diagnosis. The aim of the automatic image segmentation algorithms is thresholding. This work primarily deals with retinal image thresholding. We discuss a few works using local and global image thresholding and supervised image classification to segmentation of blood tree from retinal images. Subsequently is to set of results from two different methods used image classification and discuss effectiveness of the vessel segmentation. Use image classification instead of global thresholding changed statistics of first method on healthy part of HRF. Sensitivity and accuracy decreased to 62,32 %, respectively 94,99 %. Specificity increased to 95,75 %. Second method achieved sensitivity 69.24 %, specificity 98.86% and 95.29 % accuracy. Combining the results of both methods achieved sensitivity up to72.48%, specificity to 98.59% and the accuracy to 95.75%. This confirmed the assumption that the classifier will achieve better results. At the same time, was shown that extend the feature vector combining the results from both methods have increased sensitivity, specificity and accuracy.
|
6 |
A Novel System for Deep Analysis of Large-Scale Hand Pose DatasetsTouranakou, Maria January 2018 (has links)
This degree project proposes the design and the implementation of a novel systemfor deep analysis on large-scale datasets of hand poses. The system consists of a set ofmodules for automatic redundancy removal, classification, statistical analysis andvisualization of large-scale datasets based on their content characteristics. In thisproject, work is performed on the specific use case of images of hand movements infront of smartphone cameras. The characteristics of the images are investigated, andthe images are pre-processed to reduce repetitive content and noise in the data. Twodifferent design paradigms for content analysis and image classification areemployed, a computer vision pipeline and a deep learning pipeline. The computervision pipeline incorporates several stages of image processing including imagesegmentation, hand detection as well as feature extraction followed by a classificationstage. The deep learning pipeline utilizes a convolutional neural network forclassification. For industrial applications with high diversity on data content, deeplearning is suggested for image classification and computer vision is recommendedfor feature analysis. Finally, statistical analysis is performed to visually extractrequired information about hand features and diversity of the classified data. Themain contribution of this work lies in the customization of computer vision and deeplearning tools for the design and the implementation of a hybrid system for deep dataanalysis. / Detta examensprojekt föreslår design och implementering av ett nytt system för djup analys av storskaliga datamängder av handställningar. Systemet består av en uppsättning moduler för automatisk borttagning av redundans, klassificering, statistisk analys och visualisering av storskaliga dataset baserade på deras egenskaper. I det här projektet utförs arbete på det specifika användningsområdet för bilder av handrörelser framför smarttelefonkameror. Egenskaperna hos bilderna undersöks, och bilderna förbehandlas för att minska repetitivt innehåll och ljud i data. Två olika designparadigmer för innehållsanalys och bildklassificering används, en datorvisionspipeline och en djuplärningsrörledning. Datasynsrörledningen innehåller flera steg i bildbehandling, inklusive bildsegmentering, handdetektering samt funktionen extraktion följt av ett klassificeringssteg. Den djupa inlärningsrörledningen använder ett fällningsnätverk för klassificering. För industriella applikationer med stor mångfald på datainnehåll föreslås djupinlärning för bildklassificering och vision rekommenderas för funktionsanalys. Slutligen utförs statistisk analys för att visuellt extrahera nödvändig information om handfunktioner och mångfald av klassificerade data. Huvuddelen av detta arbete ligger i anpassningen av datasyn och djupa inlärningsverktyg för design och implementering av ett hybridsystem för djup dataanalys.
|
7 |
Moderní řečové příznaky používané při diagnóze chorob / State of the art speech features used during the Parkinson disease diagnosisBílý, Ondřej January 2011 (has links)
This work deals with the diagnosis of Parkinson's disease by analyzing the speech signal. At the beginning of this work there is described speech signal production. The following is a description of the speech signal analysis, its preparation and subsequent feature extraction. Next there is described Parkinson's disease and change of the speech signal by this disability. The following describes the symptoms, which are used for the diagnosis of Parkinson's disease (FCR, VSA, VOT, etc.). Another part of the work deals with the selection and reduction symptoms using the learning algorithms (SVM, ANN, k-NN) and their subsequent evaluation. In the last part of the thesis is described a program to count symptoms. Further is described selection and the end evaluated all the result.
|
Page generated in 0.1672 seconds