Spelling suggestions: "subject:"classification modulaire"" "subject:"1classification modulaire""
1 |
Étude et conception d'un système automatisé de contrôle d'aspect des pièces optiques basé sur des techniques connexionnistes / Investigation and design of an automatic system for optical devices' defects detection and diagnosis based on connexionist approachVoiry, Matthieu 15 July 2008 (has links)
Dans différents domaines industriels, la problématique du diagnostic prend une place importante. Ainsi, le contrôle d’aspect des composants optiques est une étape incontournable pour garantir leurs performances opérationnelles. La méthode conventionnelle de contrôle par un opérateur humain souffre de limitations importantes qui deviennent insurmontables pour certaines optiques hautes performances. Dans ce contexte, cette thèse traite de la conception d’un système automatique capable d’assurer le contrôle d’aspect. Premièrement, une étude des capteurs pouvant être mis en oeuvre par ce système est menée. Afin de satisfaire à des contraintes de temps de contrôle, la solution proposée utilise deux capteurs travaillant à des échelles différentes. Un de ces capteurs est basé sur la microscopie Nomarski ; nous présentons ce capteur ainsi qu’un ensemble de méthodes de traitement de l’image qui permettent, à partir des données fournies par celui-ci, de détecter les défauts et de déterminer la rugosité, de manière robuste et répétable. L’élaboration d’un prototype opérationnel, capable de contrôler des pièces optiques de taille limitée valide ces différentes techniques. Par ailleurs, le diagnostic des composants optiques nécessite une phase de classification. En effet, si les défauts permanents sont détectés, il en est de même pour de nombreux « faux » défauts (poussières, traces de nettoyage. . . ). Ce problème complexe est traité par un réseau de neurones artificiels de type MLP tirant partie d’une description invariante des défauts. Cette description, issue de la transformée de Fourier-Mellin est d’une dimension élevée qui peut poser des problèmes liés au « fléau de la dimension ». Afin de limiter ces effets néfastes, différentes techniques de réduction de dimension (Self Organizing Map, Curvilinear Component Analysis et Curvilinear Distance Analysis) sont étudiées. On montre d’une part que les techniques CCA et CDA sont plus performantes que SOM en termes de qualité de projection, et d’autre part qu’elles permettent d’utiliser des classifieurs de taille plus modeste, à performances égales. Enfin, un réseau de neurones modulaire utilisant des modèles locaux est proposé. Nous développons une nouvelle approche de décomposition des problèmes de classification, fondée sur le concept de dimension intrinsèque. Les groupes de données de dimensionnalité homogène obtenus ont un sens physique et permettent de réduire considérablement la phase d’apprentissage du classifieur tout en améliorant ses performances en généralisation / In various industrial fields, the problem of diagnosis is of great interest. For example, the check of surface imperfections on an optical device is necessary to guarantee its operational performances. The conventional control method, based on human expert visual inspection, suffers from limitations, which become critical for some high-performances components. In this context, this thesis deals with the design of an automatic system, able to carry out the diagnosis of appearance flaws. To fulfil the time constraints, the suggested solution uses two sensors working on different scales. We present one of them based on Normarski microscopy, and the image processing methods which allow, starting from issued data, to detect the defects and to determine roughness in a reliable way. The development of an operational prototype, able to check small optical components, validates the proposed techniques. The final diagnosis also requires a classification phase. Indeed, if the permanent defects are detected, many “false” defects (dust, cleaning marks. . . ) are emphasized as well. This complex problem is solved by a MLP Artificial Neural Network using an invariant description of the defects. This representation, resulting from the Fourier-Mellin transform, is a high dimensional vector, what implies some problems linked to the “curse of dimensionality”. In order to limit these harmful effects, various dimensionality reduction techniques (Self Organizing Map, Curvilinear Component Analysis and Curvilinear Distance Analysis) are investigated. On one hand we show that CCA and CDA are more powerful than SOM in terms of projection quality. On the other hand, these methods allow using more simple classifiers with equal performances. Finally, a modular neural network, which exploits local models, is developed. We proposed a new classification problems decomposition scheme, based on the intrinsic dimension concept. The obtained data clusters of homogeneous dimensionality have a physical meaning and permit to reduce significantly the training phase of the classifier, while improving its generalization performances
|
Page generated in 0.0923 seconds