Spelling suggestions: "subject:"classification performance"" "subject:"1classification performance""
1 |
Classification Performance Between Machine Learning and Traditional Programming in JavaAlassadi, Abdulrahman, Ivanauskas, Tadas January 2019 (has links)
This study proposes a performance comparison between two Java applications with two different programming approaches, machine learning, and traditional programming. A case where both machine learning and traditional programming can be applied is a classification problem with numeric values. The data is heart disease dataset since heart disease is the leading cause of death in the USA. Performance analysis of both applications is carried to state the differences in four main points; the development time for each application, code complexity, and time complexity of the implemented algorithms, the classification accuracy results, and the resource consumption of each application. The machine learning Java application is built with the help of WEKA library and using its NaiveBayes class to build the model and evaluate its accuracy. While the traditional programming Java application is built with the help of a cardiologist as an expert in the field of the problem to identify the injury indications values. The findings of this study are that the traditional programming application scored better performance results in development time, code complexity, and resource consumption. It scored a classification accuracy of 80.2% while the Naive Bayes algorithms in the machine learning application scored an accuracy of 85.51% but on the expense of high resource consumption and execution time.
|
2 |
Separating Tweets from Croaks : Detecting Automated Twitter Accounts with Supervised Learning and Synthetically Constructed Training Data / : Automationsdetektion av Twitter-konton med övervakad inlärning och syntetiskt konstruerad träningsmängdTeljstedt, Erik Christopher January 2016 (has links)
In this thesis, we have studied the problem of detecting automated Twitter accounts related to the Ukraine conflict using supervised learning. A striking problem with the collected data set is that it was initially lacking a ground truth. Traditionally, supervised learning approaches rely on manual annotation of training sets, but it incurs tedious work and becomes expensive for large and constantly changing collections. We present a novel approach to synthetically generate large amounts of labeled Twitter accounts for detection of automation using a rule-based classifier. It significantly reduces the effort and resources needed and speeds up the process of adapting classifiers to changes in the Twitter-domain. The classifiers were evaluated on a manually annotated test set of 1,000 Twitter accounts. The results show that rule-based classifier by itself achieves a precision of 94.6% and a recall of 52.9%. Furthermore, the results showed that classifiers based on supervised learning could learn from the synthetically generated labels. At best, the these machine learning based classifiers achieved a slightly lower precision of 94.1% compared to the rule-based classifier, but at a significantly better recall of 93.9% / Detta exjobb har undersökt problemet att detektera automatiserade Twitter-konton relaterade till Ukraina-konflikten genom att använda övervakade maskininlärningsmetoder. Ett slående problem med den insamlade datamängden var avsaknaden av träningsexempel. I övervakad maskininlärning brukar man traditionellt manuellt märka upp en träningsmängd. Detta medför dock långtråkigt arbete samt att det blir dyrt förstora och ständigt föränderliga datamängder. Vi presenterar en ny metod för att syntetiskt generera uppmärkt Twitter-data (klassifieringsetiketter) för detektering av automatiserade konton med en regel-baseradeklassificerare. Metoden medför en signifikant minskning av resurser och anstränging samt snabbar upp processen att anpassa klassificerare till förändringar i Twitter-domänen. En utvärdering av klassificerare utfördes på en manuellt uppmärkt testmängd bestående av 1,000 Twitter-konton. Resultaten visar att den regelbaserade klassificeraren på egen hand uppnår en precision på 94.6% och en recall på 52.9%. Vidare påvisar resultaten att klassificerare baserat på övervakad maskininlärning kunde lära sig från syntetiskt uppmärkt data. I bästa fall uppnår dessa maskininlärningsbaserade klassificerare en något lägre precision på 94.1%, jämfört med den regelbaserade klassificeraren, men med en betydligt bättre recall på 93.9%.
|
3 |
Distributed Support Vector Machine With Graphics Processing UnitsZhang, Hang 06 August 2009 (has links)
Training a Support Vector Machine (SVM) requires the solution of a very large quadratic programming (QP) optimization problem. Sequential Minimal Optimization (SMO) is a decomposition-based algorithm which breaks this large QP problem into a series of smallest possible QP problems. However, it still costs O(n2) computation time. In our SVM implementation, we can do training with huge data sets in a distributed manner (by breaking the dataset into chunks, then using Message Passing Interface (MPI) to distribute each chunk to a different machine and processing SVM training within each chunk). In addition, we moved the kernel calculation part in SVM classification to a graphics processing unit (GPU) which has zero scheduling overhead to create concurrent threads. In this thesis, we will take advantage of this GPU architecture to improve the classification performance of SVM.
|
Page generated in 0.0958 seconds