Spelling suggestions: "subject:"classificering"" "subject:"abcklassificering""
1 |
Deep Learning for Earth Observation: improvement of classification methods for land cover mapping : Semantic segmentation of satellite image time seriesCarpentier, Benjamin January 2021 (has links)
Satellite Image Time Series (SITS) are becoming available at high spatial, spectral and temporal resolutions across the globe by the latest remote sensing sensors. These series of images can be highly valuable when exploited by classification systems to produce frequently updated and accurate land cover maps. The richness of spectral, spatial and temporal features in SITS is a promising source of data for developing better classification algorithms. However, machine learning methods such as Random Forests (RFs), despite their fruitful application to SITS to produce land cover maps, are structurally unable to properly handle intertwined spatial, spectral and temporal dynamics without breaking the structure of the data. Therefore, the present work proposes a comparative study of various deep learning algorithms from the Convolutional Neural Network (CNN) family and evaluate their performance on SITS classification. They are compared to the processing chain coined iota2, developed by the CESBIO and based on a RF model. Experiments are carried out in an operational context using with sparse annotations from 290 labeled polygons. Less than 80 000 pixel time series belonging to 8 land cover classes from a year of Sentinel- 2 monthly syntheses are used. Results show on a test set of 131 polygons that CNNs using 3D convolutions in space and time are more accurate than 1D temporal, stacked 2D and RF approaches. Best-performing models are CNNs using spatio-temporal features, namely 3D-CNN, 2D-CNN and SpatioTempCNN, a two-stream model using both 1D and 3D convolutions. / Tidsserier av satellitbilder (SITS) blir tillgängliga med hög rumslig, spektral och tidsmässig upplösning över hela världen med hjälp av de senaste fjärranalyssensorerna. Dessa bildserier kan vara mycket värdefulla när de utnyttjas av klassificeringssystem för att ta fram ofta uppdaterade och exakta kartor över marktäcken. Den stora mängden spektrala, rumsliga och tidsmässiga egenskaper i SITS är en lovande datakälla för utveckling av bättre algoritmer. Metoder för maskininlärning som Random Forests (RF), trots att de har tillämpats på SITS för att ta fram kartor över landtäckning, är strukturellt sett oförmögna att hantera den sammanflätade rumsliga, spektrala och temporala dynamiken utan att bryta sönder datastrukturen. I detta arbete föreslås därför en jämförande studie av olika algoritmer från Konvolutionellt Neuralt Nätverk (CNN) -familjen och en utvärdering av deras prestanda för SITS-klassificering. De jämförs med behandlingskedjan iota2, som utvecklats av CESBIO och bygger på en RF-modell. Försöken utförs i ett operativt sammanhang med glesa annotationer från 290 märkta polygoner. Mindre än 80 000 pixeltidsserier som tillhör 8 marktäckeklasser från ett års månatliga Sentinel-2-synteser används. Resultaten visar att CNNs som använder 3D-falsningar i tid och rum är mer exakta än 1D temporala, staplade 2D- och RF-metoder. Bäst presterande modeller är CNNs som använder spatiotemporala egenskaper, nämligen 3D-CNN, 2D-CNN och SpatioTempCNN, en modell med två flöden som använder både 1D- och 3D-falsningar.
|
Page generated in 0.0897 seconds