• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Activity-Regulated Cytoskeleton-Associated Protein Controls AMPAR Endocytosis through a Direct Interaction with Clathrin-Adaptor Protein 2

DaSilva, L.L., Wall, M.J., de Almeida, Luciana P., Wauters, S.C., Januario, Y.C., Muller, Jurgen, Corrêa, Sonia A.L. 18 April 2016 (has links)
Yes / The activity-regulated cytoskeleton-associated (Arc) protein control synaptic strength by facilitating AMPA receptor (AMPAR) endocytosis. Here we demonstrate that Arc targets AMPAR to be internalized through a direct interaction with the clathrin-adaptor protein 2 (AP-2). We show that Arc overexpression overexpression in dissociated hippocampal neurons obtained from C57BL/6 mouse reduces the density of AMPAR GluA1 subunits at the cell surface and reduces the amplitude and rectification of AMPAR-mediated miniature-excitatory postsynaptic currents (mEPSC). Mutations of Arc, that prevent the AP-2 interaction reduce Arc-mediated endocytosis of GluA1 and abolish the reduction in AMPAR-mediated mEPSC amplitude and rectification. Depletion of the AP-2 subunit µ2 blocks the Arc-mediated reduction in mEPSC amplitude, effect that is restored by re-introducing µ2. The Arc/AP-2 interaction plays an important role in homeostatic synaptic scaling as the Arc-dependent decrease in mEPSC amplitude, induced by a chronic increase in neuronal activity, is inhibited by AP-2 depletion. This data provides a mechanism to explain how activity-dependent expression of Arc decisively controls the fate of AMPAR at the cell surface and modulates synaptic strength, via the direct interaction with the endocytic clathrin adaptor AP-2. / This work was supported by the BBSRC_FAPPA BB/J02127X/1 and BBSRC-BB/H018344/1 to SALC and by the FAPESP_RCUK_FAPPA 2012/50147-5 and FAPESP_Young Investigator’s grant 2009/50650-6 to LLdS. SCW was a PhD Student supported be the BBSRC/GSK PhD-CASE Studentship, LPdA is a postdoc fellow supported by FAPESP, YCJ was supported by a FAPESP scientific initiation scholarship.
2

Caractérisation fonctionnelle du gène AP1S1 mutant associé au syndrome de MEDNIK

Côté, Stéphanie 03 1900 (has links)
Dans les cellules eucaryotes, le trafic intracellulaire de nombreuses protéines est assuré par des vésicules de transport tapissées de clathrine. Les complexes adaptateurs de clathrine (AP) sont responsables de l’assemblage de ces vésicules et de la sélection des protéines qui seront transportées. Nous avons étudié cinq familles atteintes du syndrome neurocutané MEDNIK qui est caractérisé par un retard mental, une entéropathie, une surdité, une neuropathie périphérique, de l’icthyose et de la kératodermie. Tous les cas connus de cette maladie à transmission autosomique récessive sont originaires de la région de Kamouraska, dans la province de Québec. Par séquençage direct des gènes candidats, nous avons identifié une mutation impliquant le site accepteur de l’épissage de l’intron 2 du gène codant pour la sous-unité σ1 du complexe AP1 (AP1S1). Cette mutation fondatrice a été retrouvée chez tous les individus atteints du syndrome MEDNIK et altère l’épissage normal du gène, menant à un codon stop prématuré. Afin de valider l’effet pathogène de la mutation, nous avons bloqué la traduction de cette protéine chez le poisson zébré en injectant une séquence d’oligonucléotides antisenses spécifique à AP1S1. À 48 heures après la fertilisation, les larves knock down pour AP1S1 montrent une réduction de la pigmentation, une désorganisation de la structure de l’épiderme et une perturbation du développement moteur. Alors que la surexpression de l’AP1S1 humain dans ce modèle a permis la récupération du phénotype normal, l’expression de l’AP1S1 mutant fut sans effet sur les phénotypes moteurs et cutanés des larves knock down. Les résultats obtenus montrent que la mutation du AP1S1 responsable du syndrome de MEDNIK est associée à une perte de fonction et que la sous-unité σ1 du complexe AP1 joue un rôle crucial dans l’organisation de l’épiderme et le développement de la moelle épinière. / Intracellular protein transport between organelles is mainly mediated by clathrin coated vesicles. Clathrin adaptor protein (AP) complexes participate in clathrin coated vesicle formation and in sorting protein cargo. We studied 5 families with MEDNIK syndrome, which is characterized by mental retardation, enteropathy, deafness, neuropathy, ichtyosis and keratoderma. All families affected with this autosomal recessive syndrome originate from an isolated population in the Kamouraska region of Quebec. The candidate genes identified in the positive region were sequenced and a founder mutation was identified in the acceptor splice slice of intron 2 of the AP1S1 gene. This gene encodes for the small subunit σ1 of the complex adaptor 1 (AP1). This splicing mutation leads to a premature stop codon, which is predicted to alter the normal function of this protein. To validate the pathogenic effect of this mutation we blocked the AP1S1 protein translation in zebrafish by injecting an anti-sense oligonucleotide designed against AP1S1. At 48 hours post fertilisation, the knockdown larvae showed reduced pigmentation, perturbation of skin formation, and severe perturbation of motor development and function motor development. Over expression of the human AP1S1 rescued the normal phenotype whereas the expression of the mutant AP1S1 did not. These results show that this mutation is causative for MEDNIK syndrome and demonstrates a critical role of the small subunit σ1 in epidermal organisation and in the development of the spinal cord.
3

Caractérisation fonctionnelle du gène AP1S1 mutant associé au syndrome de MEDNIK

Côté, Stéphanie 03 1900 (has links)
Dans les cellules eucaryotes, le trafic intracellulaire de nombreuses protéines est assuré par des vésicules de transport tapissées de clathrine. Les complexes adaptateurs de clathrine (AP) sont responsables de l’assemblage de ces vésicules et de la sélection des protéines qui seront transportées. Nous avons étudié cinq familles atteintes du syndrome neurocutané MEDNIK qui est caractérisé par un retard mental, une entéropathie, une surdité, une neuropathie périphérique, de l’icthyose et de la kératodermie. Tous les cas connus de cette maladie à transmission autosomique récessive sont originaires de la région de Kamouraska, dans la province de Québec. Par séquençage direct des gènes candidats, nous avons identifié une mutation impliquant le site accepteur de l’épissage de l’intron 2 du gène codant pour la sous-unité σ1 du complexe AP1 (AP1S1). Cette mutation fondatrice a été retrouvée chez tous les individus atteints du syndrome MEDNIK et altère l’épissage normal du gène, menant à un codon stop prématuré. Afin de valider l’effet pathogène de la mutation, nous avons bloqué la traduction de cette protéine chez le poisson zébré en injectant une séquence d’oligonucléotides antisenses spécifique à AP1S1. À 48 heures après la fertilisation, les larves knock down pour AP1S1 montrent une réduction de la pigmentation, une désorganisation de la structure de l’épiderme et une perturbation du développement moteur. Alors que la surexpression de l’AP1S1 humain dans ce modèle a permis la récupération du phénotype normal, l’expression de l’AP1S1 mutant fut sans effet sur les phénotypes moteurs et cutanés des larves knock down. Les résultats obtenus montrent que la mutation du AP1S1 responsable du syndrome de MEDNIK est associée à une perte de fonction et que la sous-unité σ1 du complexe AP1 joue un rôle crucial dans l’organisation de l’épiderme et le développement de la moelle épinière. / Intracellular protein transport between organelles is mainly mediated by clathrin coated vesicles. Clathrin adaptor protein (AP) complexes participate in clathrin coated vesicle formation and in sorting protein cargo. We studied 5 families with MEDNIK syndrome, which is characterized by mental retardation, enteropathy, deafness, neuropathy, ichtyosis and keratoderma. All families affected with this autosomal recessive syndrome originate from an isolated population in the Kamouraska region of Quebec. The candidate genes identified in the positive region were sequenced and a founder mutation was identified in the acceptor splice slice of intron 2 of the AP1S1 gene. This gene encodes for the small subunit σ1 of the complex adaptor 1 (AP1). This splicing mutation leads to a premature stop codon, which is predicted to alter the normal function of this protein. To validate the pathogenic effect of this mutation we blocked the AP1S1 protein translation in zebrafish by injecting an anti-sense oligonucleotide designed against AP1S1. At 48 hours post fertilisation, the knockdown larvae showed reduced pigmentation, perturbation of skin formation, and severe perturbation of motor development and function motor development. Over expression of the human AP1S1 rescued the normal phenotype whereas the expression of the mutant AP1S1 did not. These results show that this mutation is causative for MEDNIK syndrome and demonstrates a critical role of the small subunit σ1 in epidermal organisation and in the development of the spinal cord.
4

Role of the clathrin adaptor complex AP1 and the small GTPase Rab11A in anterograde trafficking in Toxoplasma gondii / Etude du trafic vésiculaire des protéines de rhoptries et micronèmes et de la sécrétion des protéines de granules denses chez Toxoplasma gondii

Venugopal, Kannan 21 December 2016 (has links)
Toxoplasma gondii, l'agent causal de la toxoplasmose appartient au phylum des Apicomplexes. Comme son nom l'indique, le parasite possède un complexe unique d'organites sécrétoires apicaux, les micronèmes, rhoptries et le conoïde, qui jouent un rôle essentiel dans l’invasion de la cellule hôte et la survie du parasite. T. gondii est devenu un modèle populaire de biologie cellulaire et aussi un outil de référence pour l'étude de l’organisation ultra-structurale et des différentes fonctions des autres parasites du phylum Apicomplexa tel que Plasmodium, l’agent causal de la malaria. Cette thèse porte sur deux facteurs essentiels à la survie du parasite : le complexe adapteur de la clathrine AP1 et la petite GTPase Rab11A qui jouent un rôle crucial dans la régulation de certaines voies du trafic intracellulaire de T. gondii. Ainsi, nos travaux ont permis de démontrer un rôle pour AP1 dans le triage différentiel et le transport vésiculaire des protéines MIC et ROP depuis le Trans-Golgi-Network (TGN) et les compartiments endosomaux, respectivement. D’autre part, nos résultats ont révélé un rôle original de AP1 dans la division parasitaire aux stages tardifs de la cytokinèse. Nous avons également identifié un partenaire de AP1, la protéine unique de T. gondii possédant un domaine ENTH : EpsL (pour Espin-Like Protein). Dans les autres Eucaryotes, les protéines epsines sont connues pour activer la formation des vésicules à clathrine en co-opération avec les complexes AP1 et AP2. Nos résultats ont effectivement démontré un rôle de EpsL, similaire à AP1, pour la biogénèse des rhoptries et micronèmes. Nous avons, dans un deuxième temps, examiné les différentes fonctions de la petite GTPase Rab11A. Notre étude par vidéo-microscopie, semble indiquer que Rab11A régule le transport de vésicules depuis le TGN vers la périphérie cellulaire et en particulier, les pôles basal et apical du parasite. Après sur-production de la forme mutée inactive de Rab11A, nous avons démontré un nouveau rôle de la protéine dans la sécrétion des protéines membranaires de surface et dans l'exocytose des granules denses, lors de l'invasion de la cellule hôte mais aussi durant la réplication parasitaire. Finalement, des expériences de pull-down ont permis d’identifier un partenaire intéressant liant Rab11A seulement sous sa forme activée, la protéine unique de T. gondii contenant un domaine HOOK (TgHOOK), que nous avons caractérisée au niveau fonctionnel. Nos résultats suggèrent que TgHOOK régule le transport des vésicules positives pour Rab11A d’une manière dépendante des microtubules. Par conséquent, cette dernière étude a permis de révéler de nouveaux aspects encore inexplorés, bien qu’essentiels, des mécanismes régulant la sécrétion de molécules à la surface parasitaire. / Toxoplasma gondii, the causative agent for the disease Toxoplasmosis belongs to the phylum Apicomplexa. As the name implies, the parasite possesses a unique complex of apical secretory organelles namely the micronemes, rhoptries and conoid, which favor host cell invasion and intracellular survival. T.gondii has become a popular cell biology model and also a reference tool for studying the structure and functions of other important parasites that belong to the same phylum, such as plasmodium, but also higher eukaryotes. The recent advances in dissecting protein trafficking pathways have led to a better understanding of the biogenesis of apical organelles and also to the identification of crucial protein molecules that could determine the fate of the parasite. This thesis focuses on two different molecules, the Clathrin Adaptor complex AP1 and the small GTPase Rab11A that play a crucial role in distinct trafficking pathways of the parasite contributing to a wide range of functions. First, we reveal a role of AP1 in the differential sorting of microneme and rhoptry proteins at the Tran-Golgi-Network and endosomal level, respectively. Accordingly, depletion of AP1 leads to a defect in apical organelle biogenesis. In addition, we reveal an original role of AP1 in parasite division by regulating late stages of cytokinesis. We also identified and studied a partner of AP1, the unique ENTH domain containing protein of the parasite, EpsL (for Espin-like protein). In other Eukaryotes, epsin proteins are well known regulators of clathrin-mediated vesicular budding in co-operation with AP1 and AP2. We demonstrated that EpsL shares similar functions to AP1 in regulating rhoptry and microneme formation. We next worked on the small GTPase Rab11A and defined the dynamics of the protein within the parasite by live imaging. In addition to its known role in cytokinesis, we unravelled a novel function for the molecule in the secretion of surface membrane proteins and the exocytosis of dense granules during both, parasite invasion and replication. Further, pull down experiments on active Rab11A helped us fish an interesting partner molecule, the unique HOOK-domain containing protein that we functionally characterized for the first time in T.gondii. Our data suggest a role of Rab11A in microtubule-dependent transport of vesicules in a HOOK-regulated manner. Therefore, our study provides novel molecular insights into a yet unexplored but essential aspect of constitutive secretion in the parasite.

Page generated in 0.0327 seconds