• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Claudin-5 Levels Are Reduced in Human End-Stage Cardiomyopathy

Mays, Tessily, Binkley, Philip F., Lesinski, Amanda, Doshi, Amit A., Quaile, Michael P., Margulies, Kenneth B., Janssen, Paul M.L., Rafael-Fortney, Jill A. 01 July 2008 (has links)
Claudin-5 is a transmembrane cell junction protein that is a component of tight junctions in endothelial cell layers. We have previously shown that claudin-5 also localizes to lateral membranes of murine cardiomyocytes at their junction with the extracellular matrix. Claudin-5 levels are specifically reduced in myocytes from a mouse model of muscular dystrophy with cardiomyopathy. To establish whether claudin-5 is similarly specifically reduced in human cardiomyopathy, we compared the levels of claudin-5 with other cell junction proteins in 62 cardiomyopathic end-stage explant samples. We show that claudin-5 levels are reduced in at least 60% of patient samples compared with non-failing controls. Importantly, claudin-5 reductions can be independent of connexin-43, a gap junction protein previously reported to be reduced in failing heart samples. Other cell junction proteins including α-catenin, β-catenin, γ-catenin, desmoplakin, and N-cadherin are reduced in only a small number of failing samples and only in combination with reduced claudin-5 or connexin-43 levels. We also show that reduced claudin-5 levels can be present independently from dystrophin alterations, which are known to be capable of causing and resulting from cardiomyopathy. These data are the first to show alterations of a tight junction protein in human cardiomyopathy samples and suggest that claudin-5 may participate in novel mechanisms in the pathway to end-stage heart failure.
2

Analysis of the cell junction proteins CASK and claudin-5 in skeletal and cardiac muscle

Sanford, Jamie Lynn 14 July 2005 (has links)
No description available.
3

Lactate Impairs Vascular Permeability by Inhibiting HSPA12B Expression via GPR81-Dependent Signaling in Sepsis

Fan, Min, Yang, Kun, Wang, Xiaohui, Zhang, Xia, Xu, Jingjing, Tu, Fei, Gill, P Spencer, Ha, Tuanzhu, Williams, David L., Li, Chuanfu 01 October 2022 (has links)
Introduction: Sepsis impaired vascular integrity results in multiple organ failure. Circulating lactate level is positively correlated with sepsis-induced mortality. We investigated whether lactate plays a role in causing endothelial barrier dysfunction in sepsis. Methods: Polymicrobial sepsis was induced in mice by cecal ligation and puncture (CLP). Lactic acid was injected i.p. (pH 6.8, 0.5 g/kg body weight) 6 h after CLP or sham surgery. To elucidate the role of heat shock protein A12B (HSPA12B), wild-type, HSPA12B-transgenic, and endothelial HSPA12B-deficient mice were subjected to CLP or sham surgery. To suppress lactate signaling, 3OBA (120 μM) was injected i.p. 3 h before surgery. Vascular permeability was evaluated with the Evans blue dye penetration assay. Results: We found that administration of lactate elevated CLP-induced vascular permeability. Vascular endothelial cadherin (VE-cadherin), claudin 5, and zonula occluden 1 (ZO-1) play a crucial role in the maintenance of endothelial cell junction and vascular integrity. Lactate administration significantly decreased VE-cadherin, claudin 5, and ZO-1 expression in the heart of septic mice. Our in vitro data showed that lactate (10 mM) treatment disrupted VE-cadherin, claudin 5, and ZO-1 in endothelial cells. Mechanistically, we observed that lactate promoted VE-cadherin endocytosis by reducing the expression of HSPA12B. Overexpression of HSPA12B prevented lactate-induced VE-cadherin disorganization. G protein-coupled receptor 81 (GPR81) is a specific receptor for lactate. Inhibition of GPR81 with its antagonist 3OBA attenuated vascular permeability and reversed HSPA12B expression in septic mice. Conclusions: The present study demonstrated a novel role of lactate in promoting vascular permeability by decreasing VE-cadherin junctions and tight junctions in endothelial cells. The deleterious effects of lactate in vascular hyperpermeability are mediated via HSPA12B- and GPR81-dependent signaling.

Page generated in 0.0261 seconds