Spelling suggestions: "subject:"clawfree"" "subject:"cloudfree""
1 |
Approximating the circumference of 3-connected claw-free graphsBilinski, Mark 25 August 2008 (has links)
Jackson and Wormald show that every 3-connected
K_1,d-free graph, on n vertices, contains a cycle of length at least 1/2 n^g(d) where g(d) = (log_2 6 + 2 log_2 (2d+1))^-1. For d = 3, g(d) ~ 0.122.
Improving this bound, we prove that if G is a 3-connected claw-free graph on at least 6 vertices, then there exists a cycle C in G such that |E(C)| is at least c n^g+5, where
g = log_3 2 and c > 1/7 is a constant.
To do this, we instead prove a stronger theorem that requires the cycle to contain two specified edges. We then use Tutte decomposition to partition the graph and then use the inductive
hypothesis of our theorem to find paths or cycles in the different parts of the decomposition.
|
2 |
A Proof of a Conjecture on Diameter 2-Critical Graphs Whose Complements Are Claw-FreeHaynes, Teresa W., Henning, Michael A., Yeo, Anders 01 August 2011 (has links)
A graph G is diameter 2-critical if its diameter is 2, and the deletion of any edge increases the diameter. Murty and Simon conjectured that the number of edges in a diameter 2-critical graph of order n is at most n24 and that the extremal graphs are complete bipartite graphs with equal size partite sets. We use an important association with total domination to prove the conjecture for the graphs whose complements are claw-free.
|
3 |
Partitioning the Vertices of a Cubic Graph Into Two Total Dominating SetsDesormeaux, Wyatt J., Haynes, Teresa W., Henning, Michael A. 31 May 2017 (has links)
A total dominating set in a graph G is a set S of vertices of G such that every vertex in G is adjacent to a vertex of S. We study cubic graphs whose vertex set can be partitioned into two total dominating sets. There are infinitely many examples of connected cubic graphs that do not have such a vertex partition. In this paper, we show that the class of claw-free cubic graphs has such a partition. For an integer k at least 3, a graph is k-chordal if it does not have an induced cycle of length more than k. Chordal graphs coincide with 3-chordal graphs. We observe that for k≥6, not every graph in the class of k-chordal, connected, cubic graphs has two vertex disjoint total dominating sets. We prove that the vertex set of every 5-chordal, connected, cubic graph can be partitioned into two total dominating sets. As a consequence of this result, we observe that this property also holds for a connected, cubic graph that is chordal or 4-chordal. We also prove that cubic graphs containing a diamond as a subgraph can be partitioned into two total dominating sets.
|
4 |
Spanning Halin Subgraphs Involving Forbidden SubgraphsYang, Ping 09 May 2016 (has links)
In structural graph theory, connectivity is an important notation with a lot of applications. Tutte, in 1961, showed that a simple graph is 3-connected if and only if it can be generated from a wheel graph by repeatedly adding edges between nonadjacent vertices and applying vertex splitting. In 1971, Halin constructed a class of edge-minimal 3-connected planar graphs, which are a generalization of wheel graphs and later were named “Halin graphs” by Lovasz and Plummer. A Halin graph is obtained from a plane embedding of a tree with no stems having degree 2 by adding a cycle through its leaves in the natural order determined according to the embedding. Since Halin graphs were introduced, many useful properties, such as Hamiltonian, hamiltonian-connected and pancyclic, have been discovered. Hence, it will reveal many properties of a graph if we know the graph contains a spanning Halin subgraph. But unfortunately, until now, there is no positive result showing under which conditions a graph contains a spanning Halin subgraph. In this thesis, we characterize all forbidden pairs implying graphs containing spanning Halin subgraphs. Consequently, we provide a complete proof conjecture of Chen et al. Our proofs are based on Chudnovsky and Seymour’s decomposition theorem of claw-free graphs, which were published recently in a series of papers.
|
5 |
A compactness theorem for Hamilton circles in infinite graphsFunk, Daryl J. 28 April 2009 (has links)
The problem of defining cycles in infinite graphs has received much attention in the literature. Diestel and Kuhn have proposed viewing a graph as 1-complex, and defining a topology on the point set of the graph together with its ends. In this setting, a circle in the graph is a homeomorph of the unit circle S^1 in this topological space. For locally finite graphs this setting appears to be natural, as many classical theorems on cycles in finite graphs extend to the infinite setting.
A Hamilton circle in a graph is a circle containing all the vertices of the graph.
We exhibit a necessary and sufficient condition that a countable graph contain a Hamilton circle in terms of the existence of Hamilton cycles in an increasing sequence of finite graphs.
As corollaries, we obtain extensions to locally finite graphs of Zhan's theorem that all 7-connected line graphs are hamiltonian (confirming a conjecture of Georgakopoulos), and Ryjacek's theorem that all 7-connected claw-free graphs are hamiltonian. A third corollary of our main result is Georgakopoulos' theorem that the square of every two-connected locally finite graph contains a Hamilton circle (an extension of Fleischner's theorem that the square of every two-connected finite graph is Hamiltonian).
|
6 |
Capturing Polynomial Time and Logarithmic Space using Modular Decompositions and Limited RecursionGrußien, Berit 10 November 2017 (has links)
Diese Arbeit leistet Beiträge im Bereich der deskriptiven Komplexitätstheorie. Zunächst beschäftigen wir uns mit der ungelösten Frage, ob es eine Logik gibt, welche die Klasse der Polynomialzeit-Eigenschaften (PTIME) charakterisiert. Wir betrachten Graphklassen, die unter induzierten Teilgraphen abgeschlossen sind. Auf solchen Graphklassen lässt sich die 1976 von Gallai eingeführte modulare Zerlegung anwenden. Graphen, die durch modulare Zerlegung nicht zerlegbar sind, heißen prim. Wir stellen ein neues Werkzeug vor: das Modulare Zerlegungstheorem. Es reduziert (definierbare) Kanonisierung einer Graphklasse C auf (definierbare) Kanonisierung der Klasse aller primen Graphen aus C, die mit binären Relationen auf einer linear geordneten Menge gefärbt sind. Mit Hilfe des Modularen Zerlegungstheorems zeigen wir, dass Fixpunktlogik mit Zählen (FP+C) PTIME auf der Klasse aller Permutationsgraphen und auf der Klasse aller chordalen Komparabilitätsgraphen charakterisiert. Wir beweisen zudem, dass modulare Zerlegungsbäume in Symmetrisch-Transitive-Hüllen-Logik mit Zählen (STC+C) definierbar und damit in logarithmischem Platz berechenbar sind.
Weiterhin definieren wir eine neue Logik für die Komplexitätsklasse Logarithmischer Platz (LOGSPACE). Wir erweitern die Logik erster Stufe mit Zählen um einen Operator, der eine in logarithmischem Platz berechenbare Form der Rekursion erlaubt. Die resultierende Logik LREC ist ausdrucksstärker als die Deterministisch-Transitive-Hüllen-Logik mit Zählen (DTC+C) und echt in FP+C enthalten. Wir zeigen, dass LREC LOGSPACE auf gerichteten Bäumen charakterisiert. Zudem betrachten wir eine Erweiterung LREC= von LREC, die sich gegenüber LREC durch bessere Abschlusseigenschaften auszeichnet und im Gegensatz zu LREC ausdrucksstärker als die Symmetrisch-Transitive-Hüllen-Logik (STC) ist. Wir beweisen, dass LREC= LOGSPACE sowohl auf der Klasse der Intervallgraphen als auch auf der Klasse der chordalen klauenfreien Graphen charakterisiert. / This theses is making contributions to the field of descriptive complexity theory. First, we look at the main open problem in this area: the question of whether there exists a logic that captures polynomial time (PTIME). We consider classes of graphs that are closed under taking induced subgraphs. For such graph classes, an effective graph decomposition, called modular decomposition, was introduced by Gallai in 1976. The graphs that are non-decomposable with respect to modular decomposition are called prime. We present a tool, the Modular Decomposition Theorem, that reduces (definable) canonization of a graph class C to (definable) canonization of the class of prime graphs of C that are colored with binary relations on a linearly ordered set. By an application of the Modular Decomposition Theorem, we show that fixed-point logic with counting (FP+C) captures PTIME on the class of permutation graphs and the class of chordal comparability graphs. We also prove that the modular decomposition tree is definable in symmetric transitive closure logic with counting (STC+C), and therefore, computable in logarithmic space.
Further, we introduce a new logic for the complexity class logarithmic space (LOGSPACE). We extend first-order logic with counting by a new operator that allows it to formalize a limited form of recursion which can be evaluated in logarithmic space. We prove that the resulting logic LREC is strictly more expressive than deterministic transitive closure logic with counting (DTC+C) and that it is strictly contained in FP+C. We show that LREC captures LOGSPACE on the class of directed trees. We also study an extension LREC= of LREC that has nicer closure properties and that, unlike LREC, is more expressive than symmetric transitive closure logic (STC). We prove that LREC= captures LOGSPACE on the class of interval graphs and on the class of chordal claw-free graphs.
|
7 |
Trois résultats en théorie des graphesRamamonjisoa, Frank 04 1900 (has links)
Cette thèse réunit en trois articles mon intérêt éclectique pour la théorie des graphes.
Le premier problème étudié est la conjecture de Erdos-Faber-Lovász:
La réunion de k graphes complets distincts, ayant chacun k sommets, qui ont deux-à-deux au plus un sommet en commun peut être proprement coloriée en k couleurs.
Cette conjecture se caractérise par le peu de résultats publiés. Nous prouvons qu’une nouvelle classe de graphes, construite de manière inductive, satisfait la conjecture. Le résultat consistera à présenter une classe qui ne présente pas les limitations courantes d’uniformité ou de régularité.
Le deuxième problème considère une conjecture concernant la couverture des arêtes d’un graphe:
Si G est un graphe simple avec alpha(G) = 2, alors le nombre minimum de cliques nécessaires pour couvrir l’ensemble des arêtes de G (noté ecc(G)) est au plus n, le nombre de sommets de G.
La meilleure borne connue satisfaite par ecc(G) pour tous les graphes avec nombre d’indépendance de deux est le minimum de n + delta(G) et 2n − omega(racine (n log n)), où delta(G) est le plus petit nombre de voisins d’un sommet de G. Notre objectif a été d’obtenir la borne ecc(G) <= 3/2 n pour une classe de graphes la plus large possible. Un autre résultat associé à ce problème apporte la preuve de la conjecture pour une classe particulière de graphes:
Soit G un graphe simple avec alpha(G) = 2. Si G a une arête dominante uv telle que G \ {u,v} est de diamètre 3, alors ecc(G) <= n.
Le troisième problème étudie le jeu de policier et voleur sur un graphe. Presque toutes les études concernent les graphes statiques, et nous souhaitons explorer ce jeu sur les graphes dynamiques, dont les ensembles d’arêtes changent au cours du temps. Nowakowski et Winkler caractérisent les graphes statiques pour lesquels un unique policier peut toujours attraper
le voleur, appellés cop-win, à l’aide d’une relation <= définie sur les sommets de ce graphe:
Un graphe G est cop-win si et seulement si la relation <= définie sur ses sommets est triviale.
Nous adaptons ce théorème aux graphes dynamiques. Notre démarche nous mène à une relation nous permettant de présenter une caractérisation des graphes dynamiques cop-win. Nous donnons ensuite des résultats plus spécifiques aux graphes périodiques. Nous indiquons aussi comment généraliser nos résultats pour k policiers et l voleurs en réduisant ce cas à celui d’un policier unique et un voleur unique. Un algorithme pour décider si, sur un graphe périodique donné, k policiers peuvent capturer l voleurs découle de notre caractérisation. / This thesis represents in three articles my eclectic interest for graph theory.
The first problem is the conjecture of Erdos-Faber-Lovász:
If k complete graphs, each having k vertices, have the property that every pair of distinct complete graphs have at most one vertex in common, then the vertices of the resulting graph can be properly coloured by using k colours.
This conjecture is notable in that only a handful of classes of EFL graphs are proved to satisfy the conjecture. We prove that the Erdos-Faber-Lovász Conjecture holds for a new class of graphs, and we do so by an inductive argument. Furthermore, graphs in this class have no restrictions on the number of complete graphs to which a vertex belongs or on the
number of vertices of a certain type that a complete graph must contain.
The second problem addresses a conjecture concerning the covering of the edges of a graph:
The minimal number of cliques necessary to cover all the edges of a simple graph G is denoted by ecc(G). If alpha(G) = 2, then ecc(G) <= n.
The best known bound satisfied by ecc(G) for all the graphs with independence number two is the minimum of n + delta(G) and 2n − omega(square root (n log n)), where delta(G) is the smallest number of neighbours of a vertex in G.
In this type of graph, all the vertices at distance two from a given vertex form a clique. Our approach is to extend all of these n cliques in order to cover the maximum possible number of edges. Unfortunately, there are graphs for which it’s impossible to cover all the edges with this method. However, we are able to use this approach to prove a bound of ecc(G) <= 3/2n for some newly studied infinite families of graphs.
The third problem addresses the game of Cops and Robbers on a graph. Almost all the articles concern static graphs, and we would like to explore this game on dynamic graphs, the edge sets of which change as a function of time. Nowakowski and Winkler characterize static graphs for which a cop can always catch the robber, called cop-win graphs, by means of a relation <= defined on the vertices of such graphs:
A graph G is cop-win if and only if the relation <= defined on its vertices is trivial.
We adapt this theorem to dynamic graphs. Our approach leads to a relation, that allows us to present a characterization of cop-win dynamic graphs. We will then give more specific results for periodic graphs, and we will also indicate how to generalize our results to k cops and l robbers by reducing this case to one with a single cop and a single robber. An
algorithm to decide whether on a given periodic graph k cops can catch l robbers follows from our characterization.
|
Page generated in 0.0221 seconds