• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Production of blue ammonia as a clean fuel in Qatar

Al-Shamari, M., Khodary, A., Han, D.S., Mujtaba, Iqbal M., Rahmanian, Nejat 03 June 2023 (has links)
Yes / The production of blue ammonia is considered an alternative fuel to reduce CO2 emissions in the ecosystem. Qatar aims to construct the world's largest blue ammonia plant, with an annual capacity of 1.2 million tons (MT), in the first quarter of 2026. Blue ammonia is produced by combining nitrogen with "blue" hydrogen from natural gas feedstocks, with carbon dioxide captured and stored safely. Blue Ammonia can be transported by conventional ships and utilized in power stations to produce low-carbon electricity and potential future applications in decarbonized industries. The new plant will be located in Mesaieed Industrial City (MIC) and operated by QAFCO as part of its integrated facilities. QAFCO is already a significant ammonia and urea producer worldwide, with an annual production capacity of 3.8 million MT of ammonia and 5.6 million MT of urea per annum. Furthermore, QAFCO is the largest producer of urea and ammonia at a single facility worldwide. Qatar Energy Renewable Solutions (QERS) will develop and manage integrated carbon capture and storage facilities to capture and sequester 1.5 MT of CO2 per year for the blue ammonia plant. QERS will also provide more than 35 MW of renewable electricity to the Ammonia-7 facility from its upcoming PV Solar Power Plant in MIC. This project is a step towards reducing the carbon intensity of energy products and is a crucial pillar of Qatar’s sustainability and energy transition strategy to align with Qatar’s 2030 National Vision.
2

A new synthetic composite nano-catalyst achieving an environmentally Friendly fuel by batch oxidative desulfurization

Jarullah, A.T., Aldulaimi, S.K., Al-Tabbakh, B.A., Mujtaba, Iqbal M. 31 March 2022 (has links)
Yes / Production of clean fuel has recently become one of the most important goals for petroleum refining industries. The objective of this work is to obtain such clean fuel using simple and easy process under safe conditions. For this purpose, batch oxidative desulfurization (ODS) process is considered here to remove sulfur compounds found in light gas oil using a new composite synthetic homemade nano-catalyst. First the support for the new catalyst, which is HY zeolite nanoparticles, is prepared using sol-gel method. The support is then employed to generate the synthetic composite nano-catalyst which is made of copper oxide and nickel oxide using the impregnation method with different proportions of the active components such as: 5% CuO +25 % NiO, 10 % CuO +20 % NiO, 15 % CuO +15 % NiO, 20 % CuO +10 % NiO and 25 % CuO +5% NiO. An excellent distribution of the active metals with high surface area and pore volume as a result high activity has obtained. A fully automated batch reactor is used for the oxidative desulphurization of sulfur compounds and the performance of the new nano-catalyst at different safe reaction conditions (reaction temperature from 353−413 K, reaction time from 30−90 min) is evaluated in terms of sulfur removal.
3

A sustainable integration approach of chlor-alkali industries for the production of PVC and clean fuel hydrogen: prospects and Bangladesh perspectives

Roy, H., Barua, S., Ahmed, T., Mehnaz, F., Islam, M.S., Mujtaba, Iqbal M. 22 August 2022 (has links)
Yes / The chlor-alkali industries produce caustic soda (NaOH), chlorine (Cl2 ), and hydrogen (H2 ) as primary products. In 2021, the global chlor-alkali market was valued at $63.2 billion. The article evaluates the global aspects of chlor-alkali industries and prospects for Bangladesh. The current production capacity of NaOH from the chlor-alkali industries in Bangladesh is around 282,150 metric tons/year (MT/y). The by-products, chlorine (Cl2 ) of 250,470 MT/y and hydrogen (H2 ) of 7055 MT/y, are produced domestically. The local demand of Cl2 is 68,779 MT/y. However, there are no systematic utilizations of the residual Cl2 and vented H2 , which threatens the sustainability of the chlor-alkali industries. The article prefigures that a 150,000 MT/y PVC plant can utilize 45.2 % of residual Cl2 of chlor-alkali plants, which would be an economical and environmental milestone for Bangladesh. The residual Cl2 can earn revenue of 908 million USD/y, which can be utilized to import ethylene. For the sustainable utilization of vented H2 , production of H2O2 , fuel cell electric vehicle (FCEV) and H2 fuel-cell-based power plant are the feasible solutions. Thus, for the long-term growth of the chlor-alkali industry in Bangladesh and other developing countries, systematic utilization of Cl2 and H2 is the only feasible solution. / This research was funded by ‘BUET Chemical Engineering Forum (BCEF), 001-2020.
4

Association between type of cooking fuel and hypertension among women aged 30-49 years in Bangladesh: a cross-sectional study

Faruk, Md Asif January 2024 (has links)
No description available.

Page generated in 0.0555 seconds