• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Quantum stabilizer codes and beyond

Sarvepalli, Pradeep Kiran 10 October 2008 (has links)
The importance of quantum error correction in paving the way to build a practical quantum computer is no longer in doubt. Despite the large body of literature in quantum coding theory, many important questions, especially those centering on the issue of "good codes" are unresolved. In this dissertation the dominant underlying theme is that of constructing good quantum codes. It approaches this problem from three rather different but not exclusive strategies. Broadly, its contribution to the theory of quantum error correction is threefold. Firstly, it extends the framework of an important class of quantum codes - nonbinary stabilizer codes. It clarifies the connections of stabilizer codes to classical codes over quadratic extension fields, provides many new constructions of quantum codes, and develops further the theory of optimal quantum codes and punctured quantum codes. In particular it provides many explicit constructions of stabilizer codes, most notably it simplifies the criteria by which quantum BCH codes can be constructed from classical codes. Secondly, it contributes to the theory of operator quantum error correcting codes also called as subsystem codes. These codes are expected to have efficient error recovery schemes than stabilizer codes. Prior to our work however, systematic methods to construct these codes were few and it was not clear how to fairly compare them with other classes of quantum codes. This dissertation develops a framework for study and analysis of subsystem codes using character theoretic methods. In particular, this work established a close link between subsystem codes and classical codes and it became clear that the subsystem codes can be constructed from arbitrary classical codes. Thirdly, it seeks to exploit the knowledge of noise to design efficient quantum codes and considers more realistic channels than the commonly studied depolarizing channel. It gives systematic constructions of asymmetric quantum stabilizer codes that exploit the asymmetry of errors in certain quantum channels. This approach is based on a Calderbank- Shor-Steane construction that combines BCH and finite geometry LDPC codes.
2

On The Fourier Transform Approach To Quantum Error Control

Kumar, Hari Dilip 07 1900 (has links) (PDF)
Quantum mechanics is the physics of the very small. Quantum computers are devices that utilize the power of quantum mechanics for their computational primitives. Associated to each quantum system is an abstract space known as the Hilbert space. A subspace of the Hilbert space is known as a quantum code. Quantum codes allow to protect the computational state of a quantum computer against decoherence errors. The well-known classes of quantum codes are stabilizer or additive codes, non-additive codes and Clifford codes. This thesis aims at demonstrating a general approach to the construction of the various classes of quantum codes. The framework utilized is the Fourier transform over finite groups. The thesis is divided into four chapters. The first chapter is an introduction to basic quantum mechanics, quantum computation and quantum noise. It lays the foundation for an understanding of quantum error correction theory in the next chapter. The second chapter introduces the basic theory behind quantum error correction. Also, the various classes and constructions of active quantum error-control codes are introduced. The third chapter introduces the Fourier transform over finite groups, and shows how it may be used to construct all the known classes of quantum codes, as well as a class of quantum codes as yet unpublished in the literature. The transform domain approach was originally introduced in (Arvind et al., 2002). In that paper, not all the classes of quantum codes were introduced. We elaborate on this work to introduce the other classes of quantum codes, along with a new class of codes, codes from idempotents in the transform domain. The fourth chapter details the computer programs that were used to generate and test for the various code classes. Code was written in the GAP (Groups, Algorithms, Programming) computer algebra package. The fifth and final chapter concludes, with possible directions for future work. References cited in the thesis are attached at the end of the thesis.

Page generated in 0.0479 seconds