Spelling suggestions: "subject:"kuantum modes"" "subject:"kuantum codes""
1 |
Quantum stabilizer codes and beyondSarvepalli, Pradeep Kiran 10 October 2008 (has links)
The importance of quantum error correction in paving the way to build a practical
quantum computer is no longer in doubt. Despite the large body of literature in quantum
coding theory, many important questions, especially those centering on the issue of "good
codes" are unresolved. In this dissertation the dominant underlying theme is that of constructing
good quantum codes. It approaches this problem from three rather different but
not exclusive strategies. Broadly, its contribution to the theory of quantum error correction
is threefold.
Firstly, it extends the framework of an important class of quantum codes - nonbinary
stabilizer codes. It clarifies the connections of stabilizer codes to classical codes over
quadratic extension fields, provides many new constructions of quantum codes, and develops
further the theory of optimal quantum codes and punctured quantum codes. In particular
it provides many explicit constructions of stabilizer codes, most notably it simplifies
the criteria by which quantum BCH codes can be constructed from classical codes.
Secondly, it contributes to the theory of operator quantum error correcting codes also
called as subsystem codes. These codes are expected to have efficient error recovery
schemes than stabilizer codes. Prior to our work however, systematic methods to construct
these codes were few and it was not clear how to fairly compare them with other classes of
quantum codes. This dissertation develops a framework for study and analysis of subsystem
codes using character theoretic methods. In particular, this work established a close
link between subsystem codes and classical codes and it became clear that the subsystem codes can be constructed from arbitrary classical codes.
Thirdly, it seeks to exploit the knowledge of noise to design efficient quantum codes
and considers more realistic channels than the commonly studied depolarizing channel.
It gives systematic constructions of asymmetric quantum stabilizer codes that exploit the
asymmetry of errors in certain quantum channels. This approach is based on a Calderbank-
Shor-Steane construction that combines BCH and finite geometry LDPC codes.
|
2 |
MATRÓIDES E CÓDIGOS QUÂNTICOSAles, Rosilene 29 September 2017 (has links)
Submitted by Angela Maria de Oliveira (amolivei@uepg.br) on 2017-10-31T13:25:24Z
No. of bitstreams: 2
license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5)
Dissertação - Rosilene Ales.pdf: 1659544 bytes, checksum: b146b0c0707ab6d3ca5c1e525b34793c (MD5) / Made available in DSpace on 2017-10-31T13:25:24Z (GMT). No. of bitstreams: 2
license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5)
Dissertação - Rosilene Ales.pdf: 1659544 bytes, checksum: b146b0c0707ab6d3ca5c1e525b34793c (MD5)
Previous issue date: 2017-09-29 / Whitney identificou as propriedades fundamentais de dependência, que são comuns entre grafos e matrizes dando origem a Teoria de Matróides em 1935. Neste trabalho será apresentada a construção de novas famílias de Matróides e a resolução de teoremas de maneira ampla e de fácil compreensão, pois o tema é definido de forma matemática puramente abstrata. Assim, para obter um novo Matróide utiliza-se um já dado, sendo definido em termos de seus conjuntos independentes. Destaca-se que Matróides é encontrado nas seguintes abrangências: em espaços vetoriais, ciclos em grafos, funções afins, circuitos, bases, rank, fecho e dualidade. Deste modo, para construir um código quântico, precisa compreender a teoria de informação e codificação quântica como os Postulados da Mecânica Quântica, estados de um ou vários qubits, operadores unitários, portas lógicas, medidas de estados quânticos, códigos estabilizadores e a classe dos códigos de Calderbank-Shor-Steane (CSS). Os códigos lineares são os códigos da Álgebra Linear, subespaços vetoriais definidos sobre corpos finitos. Os códigos quânticos tem a finalidade de proteger possíveis erros de um canal para detectar e corrigir tais erros. Com o fundamento teórico adquirido, pode se verificar a possibilidade de construir a conexão da teoria de Matróides e a teoria de codificação quântica, por meio da matriz de verificação de paridade de um código CSS e a matriz que gera um dado Matróide vetorial. / Whitney identified the fundamental properties of dependence, which are common among graphs and matrices giving rise to Matroid Theory in 1935. In this work will be presented the construction of new families of Matroid and the resolution of theorems in a comprehensive and easy to understand, since the theme is defined in purely abstract mathematical form. Thus, to obtain a new Matroid one uses an already given one, being defined in terms of its independent sets. It should be noted that Matroid is found in the following ranges: in vector spaces, cycles in graphs, related functions, circuits, bases, rank, closure and duality. Thus, to construct a quantum code, one must understand quantum information and coding theory such as the Postulates of Quantum Mechanics, single- or multi-qubit states, unit operators, logic gates, quantum state measures, stabilizing codes, and the class of codes of Calderbank-Shor-Steane (CSS). The linear codes are the codes of Linear Algebra, vector subspaces defined on finite bodies. Quantum codes are intended to protect potential errors from a channel to detect and correct such errors. With the acquired theoretical foundation, the possibility of constructing the connection of the Matroid theory and the theory of quantum codification can be verified by means of the parity check matrix of a CSS code and the matrix that generates a given vector matroid.
|
3 |
Transversal Construction of Topological Gates on Multiqubit Quantum CodesChauwinoir, Sheila January 2022 (has links)
We study the possibility of constructing quantum gates using topological phases, which originate from local SU(2) evolution of entangled multiqubit systems. For this purpose, logical codewords using two-, three- and nine-qubit entangled states are defined and possible implementations of topological gates on these codes, are examined. For two-qubit systems, it is shown that for only two of the Pauli gates, a topological implementation is possible, the third must be non-topological. Furthermore, it is shown that a topological implementation of Hadamard gate is also possible on the two-qubit code. For the three-qubit code, the logical Pauli gates are found to be topologically implementable and a topological implementation of the logical S gate seems to be possible as well. Lastly, for the nine-qubit code, the logical Pauli gates, the logical S gate and the logical T gate are shown to be implementable topologically on the code. It remains an open question whether topological implementation of logical Hadamard gate by invertible local operators is possible on the nine-qubit code.
|
4 |
Transmitting Quantum Information Reliably across Various Quantum ChannelsOuyang, Yingkai January 2013 (has links)
Transmitting quantum information across quantum channels is an important task. However quantum information is delicate, and is easily corrupted. We address the task of protecting quantum information from an information theoretic perspective -- we encode some message qudits into a quantum code, send the encoded quantum information across the noisy quantum channel, then recover the message qudits by decoding. In this dissertation, we discuss the coding problem from several perspectives.}
The noisy quantum channel is one of the central aspects of the quantum coding problem, and hence quantifying the noisy quantum channel from the physical model is an important problem.
We work with an explicit physical model -- a pair of initially decoupled quantum harmonic oscillators interacting with a spring-like coupling, where the bath oscillator is initially in a thermal-like state. In particular, we treat the completely positive and trace preserving map on the system as a quantum channel, and study the truncation of the channel by truncating its Kraus set. We thereby derive the matrix elements of the Choi-Jamiolkowski operator of the corresponding truncated channel, which are truncated transition amplitudes. Finally, we give a computable approximation for these truncated transition amplitudes with explicit error bounds, and perform a case study of the oscillators in the off-resonant and weakly-coupled regime numerically.
In the context of truncated noisy channels, we revisit the notion of approximate error correction of finite dimension codes. We derive a computationally simple lower bound on the worst case entanglement fidelity of a quantum code, when the truncated recovery map of Leung et. al. is rescaled. As an application, we apply our bound to construct a family of multi-error correcting amplitude damping codes that are permutation-invariant. This demonstrates an explicit example where the specific structure of the noisy channel allows code design out of the stabilizer formalism via purely algebraic means.
We study lower bounds on the quantum capacity of adversarial channels, where we restrict the selection of quantum codes to the set of concatenated quantum codes.
The adversarial channel is a quantum channel where an adversary corrupts a fixed fraction of qudits sent across a quantum channel in the most malicious way possible. The best known rates of communicating over adversarial channels are given by the quantum Gilbert-Varshamov (GV) bound, that is known to be attainable with random quantum codes. We generalize the classical result of Thommesen to the quantum case, thereby demonstrating the existence of concatenated quantum codes that can asymptotically attain the quantum GV bound. The outer codes are quantum generalized Reed-Solomon codes, and the inner codes are random independently chosen stabilizer codes, where the rates of the inner and outer codes lie in a specified feasible region.
We next study upper bounds on the quantum capacity of some low dimension quantum channels.
The quantum capacity of a quantum channel is the maximum rate at which quantum information can be transmitted reliably across it, given arbitrarily many uses of it. While it is known that random quantum codes can be used to attain the quantum capacity, the quantum capacity of many classes of channels is undetermined, even for channels of low input and output dimension. For example, depolarizing channels are
important quantum channels, but do not have tight numerical bounds.
We obtain upper bounds on the quantum capacity of some unital and non-unital channels
-- two-qubit Pauli channels, two-qubit depolarizing channels, two-qubit locally symmetric channels,
shifted qubit depolarizing channels, and shifted two-qubit Pauli channels --
using the coherent information of some degradable channels. We use the notion
of twirling quantum channels, and Smith and Smolin's method of constructing
degradable extensions of quantum channels extensively. The degradable channels we
introduce, study and use are two-qubit amplitude damping channels. Exploiting the
notion of covariant quantum channels, we give sufficient conditions for the quantum
capacity of a degradable channel to be the optimal value of a concave program with
linear constraints, and show that our two-qubit degradable amplitude damping channels have this property.
|
5 |
Transmitting Quantum Information Reliably across Various Quantum ChannelsOuyang, Yingkai January 2013 (has links)
Transmitting quantum information across quantum channels is an important task. However quantum information is delicate, and is easily corrupted. We address the task of protecting quantum information from an information theoretic perspective -- we encode some message qudits into a quantum code, send the encoded quantum information across the noisy quantum channel, then recover the message qudits by decoding. In this dissertation, we discuss the coding problem from several perspectives.}
The noisy quantum channel is one of the central aspects of the quantum coding problem, and hence quantifying the noisy quantum channel from the physical model is an important problem.
We work with an explicit physical model -- a pair of initially decoupled quantum harmonic oscillators interacting with a spring-like coupling, where the bath oscillator is initially in a thermal-like state. In particular, we treat the completely positive and trace preserving map on the system as a quantum channel, and study the truncation of the channel by truncating its Kraus set. We thereby derive the matrix elements of the Choi-Jamiolkowski operator of the corresponding truncated channel, which are truncated transition amplitudes. Finally, we give a computable approximation for these truncated transition amplitudes with explicit error bounds, and perform a case study of the oscillators in the off-resonant and weakly-coupled regime numerically.
In the context of truncated noisy channels, we revisit the notion of approximate error correction of finite dimension codes. We derive a computationally simple lower bound on the worst case entanglement fidelity of a quantum code, when the truncated recovery map of Leung et. al. is rescaled. As an application, we apply our bound to construct a family of multi-error correcting amplitude damping codes that are permutation-invariant. This demonstrates an explicit example where the specific structure of the noisy channel allows code design out of the stabilizer formalism via purely algebraic means.
We study lower bounds on the quantum capacity of adversarial channels, where we restrict the selection of quantum codes to the set of concatenated quantum codes.
The adversarial channel is a quantum channel where an adversary corrupts a fixed fraction of qudits sent across a quantum channel in the most malicious way possible. The best known rates of communicating over adversarial channels are given by the quantum Gilbert-Varshamov (GV) bound, that is known to be attainable with random quantum codes. We generalize the classical result of Thommesen to the quantum case, thereby demonstrating the existence of concatenated quantum codes that can asymptotically attain the quantum GV bound. The outer codes are quantum generalized Reed-Solomon codes, and the inner codes are random independently chosen stabilizer codes, where the rates of the inner and outer codes lie in a specified feasible region.
We next study upper bounds on the quantum capacity of some low dimension quantum channels.
The quantum capacity of a quantum channel is the maximum rate at which quantum information can be transmitted reliably across it, given arbitrarily many uses of it. While it is known that random quantum codes can be used to attain the quantum capacity, the quantum capacity of many classes of channels is undetermined, even for channels of low input and output dimension. For example, depolarizing channels are
important quantum channels, but do not have tight numerical bounds.
We obtain upper bounds on the quantum capacity of some unital and non-unital channels
-- two-qubit Pauli channels, two-qubit depolarizing channels, two-qubit locally symmetric channels,
shifted qubit depolarizing channels, and shifted two-qubit Pauli channels --
using the coherent information of some degradable channels. We use the notion
of twirling quantum channels, and Smith and Smolin's method of constructing
degradable extensions of quantum channels extensively. The degradable channels we
introduce, study and use are two-qubit amplitude damping channels. Exploiting the
notion of covariant quantum channels, we give sufficient conditions for the quantum
capacity of a degradable channel to be the optimal value of a concave program with
linear constraints, and show that our two-qubit degradable amplitude damping channels have this property.
|
6 |
On The Fourier Transform Approach To Quantum Error ControlKumar, Hari Dilip 07 1900 (has links) (PDF)
Quantum mechanics is the physics of the very small. Quantum computers are devices that utilize the power of quantum mechanics for their computational primitives. Associated to each quantum system is an abstract space known as the Hilbert space. A subspace of the Hilbert space is known as a quantum code. Quantum codes allow to protect the computational state of a quantum computer against decoherence errors.
The well-known classes of quantum codes are stabilizer or additive codes, non-additive codes and Clifford codes. This thesis aims at demonstrating a general approach to the construction of the various classes of quantum codes. The framework utilized is the Fourier transform over finite groups.
The thesis is divided into four chapters. The first chapter is an introduction to basic quantum mechanics, quantum computation and quantum noise. It lays the foundation for an understanding of quantum error correction theory in the next chapter.
The second chapter introduces the basic theory behind quantum error correction. Also, the various classes and constructions of active quantum error-control codes are introduced.
The third chapter introduces the Fourier transform over finite groups, and shows how it may be used to construct all the known classes of quantum codes, as well as a class of quantum codes as yet unpublished in the literature. The transform domain approach was originally introduced in (Arvind et al., 2002). In that paper, not all the classes of quantum codes were introduced. We elaborate on this work to introduce the other classes of quantum codes, along with a new class of codes, codes from idempotents in the transform domain.
The fourth chapter details the computer programs that were used to generate and test for the various code classes. Code was written in the GAP (Groups, Algorithms, Programming) computer algebra package.
The fifth and final chapter concludes, with possible directions for future work.
References cited in the thesis are attached at the end of the thesis.
|
Page generated in 0.1143 seconds