Spelling suggestions: "subject:"climate cycle"" "subject:"climate eycle""
1 |
A Study of Stochastic Resonance in a Climate modelOlsson, Agnes, Jernmark Burrows, Ebba January 2022 (has links)
Historically, the earth’s fluctuation between interglacial and glacial climates has been observedto have a period of 105 years [1]. However, simulations of the global average temperature didn’tmanage to reproduce this cycle period until 1982, when Benzi et al. [2] introduced the combinationof long-term variations in incoming solar radiation and stochastic noise in an energy balancemodel. Using an energy balance model means that the change in global average temperature isset as proportional to the difference in ingoing and outgoing energy. The result of the simulationsdemonstrated so-called stochastic resonance, where small stochastic perturbations amplified thepattern of the variation in insolation, causing a pattern of large changes in the global averagetemperature, i.e. changes in the climate. The stochastic perturbations model unpredictable shorttime scale phenomena like the weather. Our study aimed to reproduce the result of Benzi et al.[2] and to investigate the model and its parameters. The presence of a 105-year climatic cycle insimulated data was found. The combination of both noise and varying incoming solar radiationwas necessary to observe the 105-year cycle. The characteristics of the climate cycle pattern did,however, vary greatly depending on the values of constants in the model, illustrating how themodel and constants were imprecise. Therefore, no conclusions can be drawn from this studyabout the earth’s current or future climate. However, the study still confirms that stochasticnoise is an important part of modeling the climate, and manages to simulate the earth’s observed105-year climate cycle.
|
2 |
Global Three-Dimensional Atmospheric Structure of the Atlantic Multidecadal Oscillation as Revealed by Two ReanalysesStuckman, Scott Seele January 2016 (has links)
No description available.
|
3 |
Processus de transfert des éléments volcanodétritiques dans les plaines abyssales autour de l'Île de la Réunion (océan Indien) : exemple du système turbiditique de Cilaos / Transfer process of volcaniclastic in the abyssal plain offshore La Réunion Island (indian Ocean) : example of the Cilaos turbidite systemSisavath, Emmanuelle 07 October 2011 (has links)
Bien que les systèmes turbiditiques soient très étudiés à travers le monde, les éventails sous-marins volcanoclastiques sont relativement peu connus en comparaison avec les systèmes silicoclastiques. Les nombreuses études réalisées au large des îles d’Hawaii et des Canaries n’ont pas permis d’observer de systèmes turbiditiques bien développé. Des dépôts turbiditiques et des structures sédimentaires comme des canyons et des chenaux sont néanmoins visibles au large de ces îles, suggérant que des processus autres que les grands glissements (glissement de flancs ou avalanche de débris) jouent un rôle important dans les mécanismes d’érosion et de transport des sédiments dans le domaine marin. Les nouvelles données acquises au large de l’île de La Réunion au cours des campagnes FOREVER (2006), ERODER1 (2007) et ERODER 2 (2008) ont permis de mettre en évidence l’existence de cinq systèmes turbiditiques s’étendant à plus de 200 km de l’île. Les travaux présentés dans cette thèse proposent une reconstruction du fonctionnement sédimentaire récent (150 ka) du système turbiditique de Cilaos situé au sud-ouest de l’île. Un large jeu de données, comprenant bathymétrie, imagerie sonar et profils de sondeur de sédiment, a été utilisé afin de conduire une étude détaillée de la morphologie moderne du système turbiditique de Cilaos. L’architecture sédimentaire a été caractérisée grâce àl’étude de plusieurs carottes sédimentaires. Des mesures de granulométrie, ainsi que de fluorescence X ont été effectuées le long de chaque carotte, et une analyse des isotopes de l’oxygène et des dates radiocarbone ont été utilisées pour contraindre le cadre stratigraphique. La cartographie détaillée de la zone a permis d’identifier les éléments architecturaux du système. Celui-ci comprend une zone de canyons alimentant une vallée majeure. Au pied de la pente et sur la plaine abyssale, l’éventail se développe plus largement avec notamment la présence d’un champ de sediment waves, des accumulations sédimentaires de formes lobées et des petits chenaux. La morphologie de ce système et de ses corps sédimentaires est fortement influencée par la topographie de la plaque préexistante avec la présence de rides volcaniques qui compartimentent le système sédimentaire profond et par la nature des dépôts dominés par des sédiments sableux d’origine volcanique. Les structures morphologiques identifiées aux têtes des canyons suggèrent que l’alimentation actuelle du système turbiditique de Cilaos est dominée par des processus hydrodynamiques et sédimentaires liés aux crues de la rivière Saint-Étienne. Les courants hyperpycnaux ne sont pas l’unique processus d’alimentation. La dynamique des vagues et les instabilités de pente jouent également un rôle dans le déclenchement des courants de turbidité et participent à l’incision des canyons. L’analyse détaillée des faciès et séquences sédimentaires a permis de mettre en évidence un fonctionnement sédimentaire en liaison avec l’activité volcanique. Les principales périodes d’activité turbiditiques sont associées aux périodes d’interruption de l’activité volcanique qui permettent une augmentation de l’alimentation du bassin versant de la rivière Saint-Étienne. Les variations climatoeustatiques affectent également le système mais celles-ci sont de moindre importance. L’origine volcanique des sédiments et la morphologie complexe de la plaque océanique rendent le système de Cilaos unique, tant par son mode d’alimentation comparable à celui des systèmes turbiditiques silicoclastiques, que par la nature érosive et riche en sable de ses écoulements caractéristiques des turbidites volcanoclastiques. / Even if deep-water turbidite systems have been widely studied throughout the world ocean,volcaniclastic deep-sea fans are little known compared to silicoclastic systems. Numerous studies dedicated to the Canary or the Hawaii Islands have never revealed the presence of well-developed turbidite system (with canyons, lobes and levees). Nevertheless, turbidite deposits and sedimentary structures like canyons or channels are visible off these volcanic islands suggesting that other processes than large mass wasting processes (flank landslides, debris avalanches) also played an important role in the erosion and transport of sediments in the deep marine environment adjacent to volcanic islands. The new dataset collected off La Réunion Island, during the 2006 cruises FOREVER and ERODER1 and the 2008 ERODER 2, reveals for the first time the presence of five large turbidite systems extending to more than 200 km from the island. The results presented in this PhD thesis propose a reconstruction of the recent sedimentary evolution (last 150 ka) of the Cilaos turbidite system located southwest of the island. Multibeam bathymetry, backscatter imagery, and echosounder profiles have been used to characterise the morphology of the Cilaos turbidite system. The sedimentological variability has been characterised thanks to the study of several gravity cores. Grain-size measurements, and XRF logging have been performed along each core interval and analyses of planktonic oxygen isotopes and radiocarbon dating have been used to constrain the stratigraphic framework. A detail mapping of the system allows the identification of the architectural elements of the deep-sea fan. It is composed of a canyon area feeding a wide valley. At the foot of the slope and on the abyssal plain, a wide fan is developed with a sediment waves field, lobate bodies and an extended channelized system in the lower-fan. Its morphology appears to have been strongly influenced by the morphology of the submarine slopes of the volcanic edifice, the surrounding seafloor and the high content of volcanic sands in the turbidity currents. The morphological features identified at the canyon head suggest that the present-day feeding of the Cilaos turbidite system is dominated by the hydrodynamic and sedimentary processes linked to the Saint-Etienne River floods. The hyperpycnal flows are not the only processes feeding the Cilaos canyon. Wave dynamic and slope instabilities also play a role for the triggering of turbidity currents and participate to the incision of the canyons. The detailed analysis of sedimentary facies and bodies permits to highlight that volcanic activity is the main factor controlling the fan sedimentary supplies. The two main phases of the Cilaos turbidite activity are linked to periods with low volcanic activity which led to an increase of the feeding of the Saint-Etienne drainage basin. Climatic and eustatic variations have also influenced the fan but they are interpreted to be of lesser importance. The volcanic origin of sediments and the complex morphology of the oceanic plate make unique the Cilaos fan which feeding mode is rather similar to those observed in silicoclastic turbidite systems, but its erosive and sand rich turbidite currents are characteristics of volcaniclastic turbidites.
|
4 |
Authigenic Minerals: Locality 80, Bed I Tuffs, Olduvai Gorge, TanzaniaJARRETT, ROBERT E 10 May 2014 (has links)
Understanding climatic and water-mineral chemistry affecting hominin habitats duringthe period 1.92 to 1.80 Ma in Paleolake Olduvai basin, Tanzania is of social and scientific interest. Previous Olduvai research reported climate cycles in bulk sample mineral analyses. Xray diffraction, X-ray fluorescence, and color analyses of Locality 80 Tuff Bed I samples tested the null hypothesis: Alteration mineralogy of Central Basin volcanic Tuffs IA through IF reflect salinity/alkalinity cycles. Such cyclicity was not found. Several primary authigenic minerals were confirmed, but not as previously reported. Tuffs are thoroughly altered, mostly to potassium-feldspars, zeolites, and carbonates, plus other feldspars and clay minerals (clays not in this study). Nevertheless, other findings reveal there is more to be learned. Results imply a majorgeochemical shift around 1.869-1.857 Ma, from non-zeolite forming environments to zeolite forming environments. A newly developed age model could aid re-analysis of past work and assist future research.
|
Page generated in 0.0554 seconds